The global climate is becoming warmer and wetter, and the physical properties of saline soil are easily affected by the external climate changes, which can lead to complex water-heat-salt-mechanics (WHSM) coupling effect within the soil. However, in the context of climate change, the current research on the surface energy balance process and laws of water and salt migration in saline soil are not well understood. Moreover, testing systems for studying the impact of external meteorological factors on the properties of saline soil are lacking. Therefore, this study developed a testing system that can simulate the environmental coupling effect of the WHSM in saline soil against a background of climate change. Based on meteorological data from the Hexi District in the seasonal permafrost region of China, the testing system was used to clarify the characteristics of surface energy and WHSM coupling changes in sulfate saline soil in Hexi District during the transition of the four seasons throughout the year. In addition, the reliability of the testing system was also verified using testing data. The results showed that the surface albedo of sulfate saline soil in the Hexi region was the highest in winter, with the highest exceeding 0.4. Owing to changes in the external environment, the heat flux in the sulfate saline soil in spring, summer, and early autumn was positive, while the heat flux in late autumn and winter was mainly negative. During the transition of the four seasons throughout the year in the Hexi region, the trends of soil temperature, volumetric water content, and conductivity were similar, first increasing and then decreasing. As the soil depth increased, the influence of external environmental factors on soil temperature, volumetric water content, and conductivity gradually weakened, and the hysteresis effect became more pronounced. Moreover, owing to the influence of external environmental temperature, salt expansion in the positive temperature stage accounts for approximately five times the salt-frost heave deformation in the negative temperature stage, indicating that the deformation of sulfate saline soil in the Hexi region is mainly caused by salt expansion. Therefore, to reduce the impact of external climate change on engineering buildings and agriculture in salted seasonal permafrost regions, appropriate measures and management methods should be adopted to minimize salt expansion and soil salinization.
This study investigates black carbon (BC) concentrations in the seasonal snowpack on the Godwin-Austen Glacier and in surface snow at K2 Camps 1 and 2 (Karakoram Range), assessing their impact on snowmelt during the 2019 ablation season. Potential BC and moisture sources were identified through back-trajectory analysis and atmospheric reanalyses. Variations in water stable isotopes (delta 1(8)O and delta 2H) in the snowpack were analysed to confirm its representativeness as a climatic record for the 2018-19 accumulation season. The average BC concentration in the snow pits (12 ng g-1) generated 66 mm w.e. (or 53 mm w.e. excluding the basal zone) of meltwater. Surface snow at K2 Camp 1 showed BC concentrations of 7 ng g-1, consistent with those on the snowpack surface, suggesting it may reflect local BC levels in late February 2019. In contrast, higher concentrations at K2 Camp 2 (26 ng g-1) were potentially linked to expedition activities.
The freeze-thaw cycle of near-surface soils significantly affects energy and water exchanges between the atmosphere and land surface. Passive microwave remote sensing is commonly used to observe the freeze-thaw state. However, existing algorithms face challenges in accurately monitoring near-surface soil freeze/thaw in alpine zones. This article proposes a framework for enhancing freeze/thaw detection capability in alpine zones, focusing on band combination selection and parameterization. The proposed framework was tested in the three river source region (TRSR) of the Qinghai-Tibetan Plateau. Results indicate that the framework effectively monitors the freeze/thaw state, identifying horizontal polarization brightness temperature at 18.7 GHz (TB18.7H) and 23.8 GHz (TB23.8H) as the optimal band combinations for freeze/thaw discrimination in the TRSR. The framework enhances the accuracy of the freeze/thaw discrimination for both 0 and 5-cm soil depths. In particular, the monitoring accuracy for 0-cm soil shows a more significant improvement, with an overall discrimination accuracy of 90.02%, and discrimination accuracies of 93.52% for frozen soil and 84.68% for thawed soil, respectively. Furthermore, the framework outperformed traditional methods in monitoring the freeze-thaw cycle, reducing root mean square errors for the number of freezing days, initial freezing date, and thawing date by 16.75, 6.35, and 12.56 days, respectively. The estimated frozen days correlate well with both the permafrost distribution map and the annual mean ground temperature distribution map. This study offers a practical solution for monitoring the freeze/thaw cycle in alpine zones, providing crucial technical support for studies on regional climate change and land surface processes.
Alpine meadows are vital ecosystems on the Qinghai-Tibet Plateau, significantly contributing to water conservation and climate regulation. This study examines the energy flux patterns and their driving factors in the alpine meadows of the Qilian Mountains, focusing on how the meteorological variables of net radiation (Rn), air temperature, vapor pressure deficit (VPD), wind speed (U), and soil water content (SWC) influence sensible heat flux (H) and latent heat flux (LE). Using the Bowen ratio energy balance method, we monitored energy changes during the growing and non-growing seasons from 2022 to 2023. The annual average daily Rn was 85.29 W m-2, with H, LE, and G accounting for 0.56, 0.71, and -0.32 of Rn, respectively. Results show that Rn is the main driver of both H and LE, highlighting its crucial role in turbulent flux variations. Additionally, a negative correlation was found between air temperature and H, suggesting that high temperatures may suppress H. A significant positive correlation was observed between soil moisture and LE, further indicating that moist soil conditions enhance LE. In conclusion, this study demonstrates the impact of climate change on energy distribution in alpine meadows and calls for further research on the ecosystem's dynamic responses to changing climate conditions.
Exploring the complex relationship between the freeze-thaw cycle and the surface energy budget (SEB) is crucial for deepening our comprehension of climate change. Drawing upon extensive field monitoring data of the Qinghai-Tibet Plateau, this study examines how surface energy accumulation influences the thawing depth. Combined with Community Land Model 5.0 (CLM5.0), a sensitivity test was designed to explore the interplay between the freeze-thaw cycle and the SEB. It is found that the freeze-thaw cycle process significantly alters the distribution of surface energy fluxes, intensifying energy exchange between the surface and atmosphere during phase transitions. In particular, an increase of 65.6% is observed in the ground heat flux during the freezing phase, which subsequently influences the sensible and latent heat fluxes. However, it should be noted that CLM5.0 has limitations in capturing the minor changes in soil moisture content and thermal conductivity during localized freezing events, resulting in an imprecise representation of the complex freeze-thaw dynamics in cold regions. Nevertheless, these results offer valuable insights and suggestions for improving the parameterization schemes of land surface models, enhancing the accuracy and applicability of remote sensing applications and climate research.
Driven by human activities and global climate change, the climate on the Qinghai-Xizang Plateau is experiencing a warming and humidifying trend. It significantly impacts the thermal-moisture dynamics in the active layer of the permafrost, which in turn affects the ecological environment of cold regions and the stability of cold region engineering. While the effect of air temperature on permafrost thaw has been well quantified, the processes and mechanisms behind the thermal-moisture response of the permafrost under the combined influence of increased rainfall and rising air temperature remain contentious and largely unknown. A coupled model was applied to quantify the impacts of increased rainfall, rising air temperature, and their compound effects on the thermal-moisture dynamics in the active layer, considering the sensible heat of rainwater in the ground surface energy balance and water balance process. The results indicate that the compound effect of warming and humidifying resulted in a significant increase in surface net radiation and evaporation latent heat, a more significant decrease in surface sensible heat, and a smaller impact of rainfall sensible heat, leading to an increase in surface soil heat flux. The compound effect of warming and humidifying leads to a significant increase in the liquid water flux with temperature gradient. The increase in liquid water flux due to the temperature gradient is larger than that of warming alone but smaller than the effect of humidifying alone. Warming and humidifying result in a smaller increase in soil moisture content during the warm season compared to rainfall increases alone. The thermal conductivity heat flux in the active layer increases significantly during the cold season but less than the effect of warming alone. The convective heat flux of liquid water flux increases noticeably during the warm season but less than the effect of rainfall increases alone. Increased rainfall significantly cools the soil during the warm season, while both warming and humidifying lead to a more pronounced warming effect on the soil during the cold season than during the warm season. An increase in the average annual temperature by 1.0 degrees C leads to a downward shift of the permafrost table by 10 cm, while an increase in rainfall by 100 mm causes an upward shift of the permafrost table by 8 cm. The combined effect of warming and humidifying results in a downward shift of the permafrost table by 6 cm. Under the influence of climate warming and humidifying, the cooling effect of increased rainfall on permafrost is relatively small, and the warming effect of increased temperature still dominates.
Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling. This study emphasized the influence of the initial soil temperature (ST) and soil moisture (SM) conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau (TP) using the Community Land Model version 5.0 (CLM5.0). The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic, and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site. Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes. The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost, which coexists with soil liquid water (SLW), and soil ice (SI) when the ST is below freezing temperature, effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes. Consequently, the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method. Three modified initial soil schemes experiments resulted in a 64%, 88%, and 77% reduction in the average mean bias error (MBE) of ST, and a 13%, 21%, and 19% reduction in the average root-mean-square error (RMSE) of SLW compared to the default simulation results. Also, the average MBE of net radiation was reduced by 7%, 22%, and 21%.
The detailed physical processes involved in slowing glacier ablation by material cover remain poorly understood so far. In the present study, using the snow cover model SNOWPACK, the effect of geotextile cover on the energy and mass balance at the tongue of the Urumqi Glacier No. 1 (Chinese Tien Shan) was simulated between July 12, 2022 and August 31, 2022. The mass changes and the energy fluxes with and without material cover were compared. The results indicated that the geotextile covering reduced glacier ablation by approximately 68% compared to the ablation in the uncovered regions. The high solar reflectivity of the geotextile reduced the net short-wave radiation energy available for the melt by 45%. Thermal insulation of the geotextile reduced the sensible heat flux by 15%. In addition, the wet geotextile exerted a cooling effect through long-wave radiation and negative latent heat flux. This cooling effect reduced the energy available for ablation by 20%. Consequently, only 37% of the energy was used for melting compared to that used in the uncovered regions (67%). Sensitivity experiments revealed that the geotextile cover used at a thickness range of 0.045-0.090 m reduced the ice loss by approximately 68%-72%, and a further increase in the thickness of the geotextile cover led to little improvements. A higher temperature and greater wind speed increased glacier ablation, although their effects were small. When the precipitation was set to zero, it led to a significantly increased melt. Overall, the geotextile effectively protected the glacier tongue from rapid melting, and the observed results have provided inspiration for developing an effective and sustainable approach to protect the glaciers using geotextile cover.
Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. The objective of this study was to investigate the potential of potato peel waste (PPW) at various temperatures T15 (15 degrees C), T25 (25 degrees C), and T35 (35 degrees C) in anaerobic digestion (AD) for biogas generation. The highest biogas and CH4 production (117 mL VS-g and 74 mL VS-g) was observed by applying 35 degrees C (T35) as compared with T25 (65 mL VS-g and 22 mL VS-g) on day 6. Changes in microbial diversity associated with different temperatures were also explored. The Shannon index of bacterial community was not significantly affected, while there was a positive correlation of archaeal community with the applied temperatures. The bacterial phyla Firmicutes were strongly affected by T35 (39%), whereas Lactobacillus was the dominant genera at T15 (27%). Methanobacterium and Methanosarcina, as archaeal genera, dominated in T35 temperature reactors. In brief, at T35, Proteiniphilum and Methanosarcina were positively correlated with volatile fatty acids (VFAs) concentration. Spearman correlation revealed dynamic interspecies interactions among bacterial and archaeal genera; facilitating the AD system. This study revealed that temperature variations can enhance the microbial community of the AD system, leading to increased biogas production. It is recommended for optimizing the AD of food wastes.
This study examines the Arctic surface air temperature response to regional aerosol emissions reductions using three fully coupled chemistry-climate models: National Center for Atmospheric Research-Community Earth System Model version 1, Geophysical Fluid Dynamics Laboratory-Coupled Climate Model version 3 (GFDL-CM3) and Goddard Institute for Space Studies-ModelE version 2. Each of these models was used to perform a series of aerosol perturbation experiments, in which emissions of different aerosol types (sulfate, black carbon (BC), and organic carbon) in different northern mid-latitude source regions, and of biomass burning aerosol over South America and Africa, were substantially reduced or eliminated. We find that the Arctic warms in nearly every experiment, the only exceptions being the U.S. and Europe BC experiments in GFDL-CM3 in which there is a weak and insignificant cooling. The Arctic warming is generally larger than the global mean warming (i.e. Arctic amplification occurs), particularly during non-summer months. The models agree that changes in the poleward atmospheric moisture transport are the most important factor explaining the spread in Arctic warming across experiments: the largest warming tends to coincide with the largest increases in moisture transport into the Arctic. In contrast, there is an inconsistent relationship (correlation) across experiments between the local radiative forcing over the Arctic and the simulated Arctic warming, with this relationship being positive in one model (GFDL-CM3) and negative in the other two. Our results thus highlight the prominent role of poleward energy transport in driving Arctic warming and amplification, and suggest that the relative importance of poleward energy transport and local forcing/feedbacks is likely to be model dependent.