Elastic shear moduli of soil at various temperatures and suctions are important for analysing the serviceability limit state of energy piles and many other structures. Up to now, however, the coupled effects of temperature and suction on elastic shear modulus and the stiffness anisotropy, have not been well understood. This experimental study investigated the anisotropic elastic shear modulus of a compacted lateritic clay. A temperature and suction-controlled triaxial apparatus equipped with bender element probes and local strain measurements was used. Soil suctions from 0 to 300 kPa, and a temperature range of 5-40 degrees C were applied. The results at saturated and unsaturated conditions consistently reveal that the shear modulus is smaller after heating at a given stress and suction. Several mechanisms may contribute to this thermal-induced reduction in shear modulus, such as the heating-induced reduction of interparticle force and air-water surface tension. Moreover, the reduction in shear modulus upon heating depends on the shear plane and the degree of anisotropy changes.
Elastic moduli, e.g. shear modulus G and bulk modulus K, are important parameters of geotechnical materials, which are not only the indices for the evaluation of the deformation ability of soils but also the important basic parameters for the development of the constitutive models of geotechnical materials. In this study, a series of triaxial loading-unloading-reloading shear tests and isotropic loading-unloadingreloading tests are conducted to study several typical mechanical properties of coral calcareous sand (CCS), and the void ratio evolution during loading, unloading and reloading. The test results show that the stress-strain curves during multiple unloading processes are almost parallel, and their slopes are much greater than the deformation modulus at the initial stage of loading. The relationship between the confining pressure and the volumetric strain can be defined approximately by a hyperbolic equation under the condition of monotonic loading of confining pressure. Under the condition of confining pressure unloading, the evolution of void ratio is linear in the e-lnp' plane, and these lines are a series of almost parallel lines if there are multiple processes of unloading. Based on the experimental results, it is found that the modified Hardin formulae for the elastic modulus estimation have a significant deviation from the tested values for CCS. Based on the experimental results, it is proposed that the elastic modulus of soils should be determined by the inter line of two spatial surfaces in the G/K-e-p'/pa space (pa: atmosphere pressure). Ye formulation is further proposed for the estimation of the elastic modulus of CCS. This new estimation formulation for soil elastic modulus would provide a new method to accurately describe the mechanical behavior of granular soils. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).