共检索到 5

AimGlobally, forests at the alpine-treeline ecotone (ATE) are considered sensitive to warming temperatures; however, responses to recent climate change show high variability and many underlying processes remain unclear. This study aims to provide further insight into possible ATE forest responses to climate change by examining spatiotemporal patterns in recent tree regeneration and growth responses to climate across treeline forms.LocationThis study is situated at the ATE in the Rocky Mountain and Columbia Mountain ranges in central British Columbia, Canada.TaxonGymnosperms - subalpine fir (Abies lasiocarpa Hooker (Nutall)).MethodsWe collected tree and stand data from 48 plots across five study sites. Plots were distributed across three treeline stand types: (i) islands; (ii) abrupt; and (iii) fringes of regeneration adjacent to tree islands. We used a dendrochronological approach to analyse the ages of recently established trees in fringe stand types, detect long-term trends in annual tree growth and quantify climate-growth relationships.ResultsSeedling recruitment adjacent to tree islands occurred over a period of approximately 40 years (1960-2000), with two regeneration pulses in the late 1970s and 1980s. Abrupt and fringe trees showed a similar age structure and annual radial growth has increased in most trees over the past 30 years. Across the study region and stand types, summer temperature has the strongest influence on radial growth. Over the past 70 years, growth in tree islands has become increasingly correlated with growing season temperature variables.Main ConclusionsForest growth and structure have changed in coherent spatial and temporal patterns over recent decades at the ATE in central BC. Projections for sustained warming in this region will likely result in increased tree growth and potential continued expansion of forests into untreed areas below the treeline. These changes will have implications for hydrological regimes, wildlife habitat and carbon sequestration.

期刊论文 2024-04-01 DOI: 10.1111/jbi.14778 ISSN: 0305-0270

Permafrost degradation by global warming is expected to alter the hydrological processes, which results in changes in vegetation species composition and gives rise to community succession. Ecotones are sensitive transition areas between ecosystem boundaries, attract particular interest due to their ecological importance and prompt responses to the environmental variables. However, the characteristics of soil microbial communities and extracellular enzymes along the forest-wetland ecotone in high-latitude permafrost region remain poorly understood. In this study, we evaluated the variations of soil bacterial and fungal community structures and soil extracellular enzymatic activities of 0-10 cm and 10-20 cm soil layers in five different wetland types along environmental gradients, including Larix gmelinii swamp (LY), Betula platyphylla swamp (BH), Alnus sibirica var. hirsute swamp (MCY), thicket swamp (GC), and tussock swamp (CC). The relative abundances of some dominant bacterial (Actinobacteria and Verrucomicrobia) and fungal (Ascomycota and Basidiomycota) phyla differed significantly among different wetlands, while bacterial and fungal alpha diversity was not strongly affected by soil depth. PCoA results showed that vegetation type, rather than soil depth explained more variation of soil microbial community structure. beta-glucosidase and beta-N-acetylglucosaminidase activities were significantly lower in GC and CC than in LY, BH, and MCY, while acid phosphatase activity was significantly higher in BH and GC than LY and CC. Altogether, the data suggest that soil moisture content (SMC) was the most important environmental factor contributing to the bacterial and fungal communities, while extracellular enzymatic activities were closely related to soil total organic carbon (TOC), nitrate nitrogen (NO3--N) and total phosphorus (TP).

期刊论文 2023-06-01 DOI: 10.1002/ece3.10205 ISSN: 2045-7758

Permafrost peatlands are a huge carbon pool that is uniquely sensitive to global warming. However, despite the importance of peatlands in global carbon sequestration and biogeochemical cycles, few studies have characterized the distribution characteristics and drivers of soil microbial community structure in forest-peatland ecotones. Here, we investigated the vertical distribution patterns of soil microbial communities in three typical peatlands along an environmental gradient using Illumina high-throughput sequencing. Our findings indicated that bacterial richness and diversity decreased with increasing soil depth in coniferous swamp (LT) and thicket swamp (HT), whereas the opposite trend was observed in a tussock swamp (NT). Additionally, these parameters decreased at 0-20 and 20-40 cm and increased at 40-60 cm along the environmental gradient (LT to NT). Principal coordinate analysis (PCoA) indicated that the soil microbial community structure was more significantly affected by peatland type than soil depth. Actinomycetota, Proteobacteria, Firmicutes, Chloroflexota, Acidobacteriota, and Bacteroidota were the predominant bacterial phyla across all soil samples. Moreover, there were no significant differences in the functional pathways between the three peatlands at each depth, except for amino acid metabolism, membrane transport, cell motility, and signal transduction. Redundancy analysis (RDA) revealed that pH and soil water content were the primary environmental factors influencing the bacterial community structure. Therefore, this study is crucial to accurately forecast potential changes in peatland ecosystems and improve our understanding of the role of peat microbes as carbon pumps in the process of permafrost degradation.

期刊论文 2022-11-01 DOI: 10.3390/ijerph192214782

As found by comparing historical topographic maps and present-day satellite images, steppificated areas in the southern part of the eastern macroslope of the Southern Urals have decreased in size by 17.6% between 1986 and 2015 due to forest expansion. Analysis of the age structure of tree stands in the forest-mountain steppe ecotone provided evidence for intense pine and larch regeneration in this region from 1915 to the 1960s, which has led to significant increase in stand density and upward shift of treelines along slopes and ravines by the end of the 20th century. Intense pine regeneration during the past 35-40 years has been observed at the boundary between closed and open forests and in sparse woodlands. Forest expansion to the mountain steppes throughout the ecotone proceeded against the background of increase in temperature and precipitation during the cold period of the year. The rate of forest expansion to particular areas varied depending on differences in moisture supply, which, in turn, depended on local microclimatic and edaphic conditions. This is confirmed by our measurements of snow depth and density and soil moisture and thickness, which show that forest has expanded at the highest rate in more snowy and moisture-abundant slope areas.

期刊论文 2020-07-01 DOI: 10.1134/S1067413620040074 ISSN: 1067-4136

Soil organic matter decomposition under global warming has a potential to alter soil carbon and nitrogen storages in permafrost. The objectives of this study were to investigate the temperature sensitivity of greenhouse gas emissions from soil samples along a mountain wetland-forest ecotone in the continuous permafrost and determine its influencing mechanisms. The CO2, N2O and carbon, nitrogen substrates were measured at 5, 15 and 25 degrees C. The relation between greenhouse gas emission rates and temperature depended on substrate quality in the three ecosystems. Soil DOC, MBC, NH4+ and NO3- concentrations determined the higher CO2 and N2O emission rates in the thicket peatland and the surface soil layer. During the incubation period, the degrees of soil carbon and nitrogen losses in the thicket peatland were 0.6-4.7% and 1.0-143 (1000 x %), approximately 1.6 and 1.2 times higher than those in the forest and fen, respectively. The highest degrees of soil carbon and nitrogen losses in the thicket peatland indicated that more greenhouse gases would emit from soils when permafrost degradation induced the succession from wetlands or forest to the wetland-forest ecotone. Although the gas emission rates presented significant differences in the three ecosystems, the Q(10) values with 2.0 to 2.2 for CO2 and 2.4 to 3.0 for N2O, did not change significantly, indicating that the temperature sensitivity of gas emissions would not fluctuate much in the ecosystems along the mountain wetland-forest ecotone. However, the higher Q(10) values in the deeper soil layer in our study indicated that the decomposition of soil C and N in the deeper active layer of the permafrost region is more impressionable to global warming. As laboratory results could not actually reflect the situation in the field, more field work about temperature sensitivity of soil organic matter decomposition in different ecosystems should be encouraged in the future. (C) 2014 Elsevier B.V. All rights reserved.

期刊论文 2014-10-01 DOI: 10.1016/j.catena.2014.05.007 ISSN: 0341-8162
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页