共检索到 2

Wood density (WD) is a key functional trait for its importance in tree performance and in biomass calculations of forests. Yet, the variation of WD among different woody tree parts, how this varies across ecosystems, and how this influences estimates of forest carbon stocks remains little understood, particularly for diverse tropical forests such as the Amazon. We assembled a dataset on stem and twig wood density from 119 tree species in three different Amazonian ecosystem types that differ considerably in soil nutrition and flooding: non-flooded forest (Terra Firme), white-water floodplain forest (V & aacute;rzea) and black-water floodplain forest (Igap & oacute;) to investigate (i) variation of stem and twig wood density across ecosystems, (ii) the relationships between stem and twig wood density and how these relationships vary across ecosystems. Wood density varied substantially across ecosystems. V & aacute;rzea species showed lower mean WD for stems compared to Terra firme, while Igap & oacute; species showed higher WD for twigs compared to the other ecosystems. Twig and stem wood density were positively related (R2adj = 0.47) with similarly increasing rates across ecosystems, although average WD values differed between Terra firme and Igap & oacute;. For any given twig density, stem density tends to be lower in floodplain environments but higher in Terra firme, a habitat-specific pattern of wood density variation within trees that may emerge from differences in the function of stem and twig wood for growth and survival in ecologically differentiated environments. Our results show how ecosystem has strong impacts on how trees allocate resources to different woody tissues, suggesting contrasting ecological strategies linked to ecosystem constraints. Our results suggest that greater consideration of the variation of WD within trees and how these changes across ecosystems might lead to more accurate estimates of above-ground biomass in Amazonia.Read the free Plain Language Summary for this article on the Journal blog. A densidade da madeira (WD) & eacute; um tra & ccedil;o funcional chave devido a sua import & acirc;ncia na performance das & aacute;rvores e para os c & aacute;lculos de biomassa em florestas. Entretanto, pouco se conhece sobre a varia & ccedil;& atilde;o da WD entre diferentes partes das plantas, se tal varia & ccedil;& atilde;o muda entre ecossistemas, e como isto influencia as estimativas de estoque de carbono, principalmente em florestas tropicais muito diversas como a Amaz & ocirc;nia. N & oacute;s utilizamos um conjunto de dados de densidade da madeira do tronco e do ramo de 119 esp & eacute;cies de & aacute;rvores de tr & ecirc;s tipos de ecossistemas amaz & ocirc;nicos: florestas de terra firme, florestas alag & aacute;veis de & aacute;guas brancas (V & aacute;rzea) e florestas alag & aacute;veis de & aacute;guas pretas (Igap & oacute;s) e investigamos (i) a variabilidade da densidade da madeira do tronco e do ramo entre ecossistemas, (ii) e a rela & ccedil;& atilde;o entre a densidade da madeira do tronco e a do ramo, e como esta rela & ccedil;& atilde;o varia entre os ecossistemas. A densidade da madeira variou consideravelmente entre os ecossistemas. As esp & eacute;cies de V & aacute;rzea tiveram WD m & eacute;dia do tronco menor comparada a Terra firme, enquanto as esp & eacute;cies de Igap & oacute; tiveram WD m & eacute;dia do ramo maior comparada aos outros ecossistemas. A densidade do ramo e do tronco tiveram correla & ccedil;& atilde;o positiva (R(2)adj = 0.47) e taxas de aumento similares entre os ecossistemas, mas com diferen & ccedil;a nos valores m & eacute;dios de densidade entre Terra firme e Igap & oacute;. Para um dado valor de WD do ramo, a WD do tronco tende a ser menor nas florestas alag & aacute;veis, por & eacute;m maior na Terra firme, um padr & atilde;o de varia & ccedil;& atilde;o na densidade das & aacute;rvores espec & iacute;fico do habitat, que pode surgir de diferen & ccedil;as nas fun & ccedil;& otilde;es do tronco e do ramo para o crescimento e sobreviv & ecirc;ncia das esp & eacute;cies em ambientes ecologicamente distintos. N & oacute;s mostramos como os ecossistemas impactam a aloca & ccedil;& atilde;o de recursos das & aacute;rvores em diferentes tecidos da madeira, sugerindo a exist & ecirc;ncia de estrat & eacute;gias ecol & oacute;gica contrastantes associadas as restri & ccedil;& otilde;es ambientais. Nossos resultados sugerem que considerar a varia & ccedil;& atilde;o da WD de uma & aacute;rvore e como tal varia & ccedil;& atilde;o muda entre ecossistemas pode propiciar estimativas mais acuradas de biomassa na Amaz & ocirc;nia. Read the free Plain Language Summary for this article on the Journal blog.image

期刊论文 2024-07-01 DOI: 10.1111/1365-2435.14572 ISSN: 0269-8463

Permafrost, a key component of Arctic ecosystems, is currently affected by climate warming and anticipated to undergo further significant changes in this century. The most pronounced changes are expected to occur in the transition zone between the discontinuous and continuous types of permafrost. We apply a transient temperature dynamic model to investigate the spatiotemporal evolution of permafrost conditions on the Seward Peninsula, Alaska-a region currently characterized by continuous permafrost in its northern part and discontinuous permafrost in the south. We calibrate model parameters using a variational data assimilation technique exploiting historical ground temperature measurements collected across the study area. The model is then evaluated with a separate control set of the ground temperature data. Calibrated model parameters are distributed across the domain according to ecosystem types. The forcing applied to our model consists of historic monthly temperature and precipitation data and climate projections based on the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Simulated near-surface permafrost extent for the 2000-2010 decade agrees well with existing permafrost maps and previous Alaska-wide modeling studies. Future projections suggest a significant increase (3.0 degrees C under RCP 4.5 and 4.4 degrees C under RCP 8.5 at the 2 m depth) in mean decadal ground temperature on average for the peninsula for the 2090-2100 decade when compared to the period of 2000-2010. Widespread degradation of the near-surface permafrost is projected to reduce its extent at the end of the 21st century to only 43% of the peninsula's area under RCP 4.5 and 8% under RCP 8.5.

期刊论文 2020-08-01 DOI: 10.1029/2019JF005355 ISSN: 2169-9003
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页