共检索到 3

A group of earthquakes typically consists of a mainshock followed by multiple aftershocks. Exploration of the dynamic behaviors of soil subjected to sequential earthquake loading is crucial. In this paper, a series of cyclic simple shear tests were performed on the undisturbed soft clay under different cyclic stress amplitudes and reconsolidation degrees. The equivalent seismic shear stress was calculated based on the seismic intensity and soil buried depth. Furthermore, reconsolidation was conducted at the loading interval to investigate the influence of seismic history. An empirical model for predicting the variation of the accumulative dissipated energy with the number of cycles was established. The energy dissipation principle was employed to investigate the evolution of cyclic shear strain and equivalent pore pressure. The findings suggested that as the cyclic stress amplitude increased, incremental damage caused by the aftershock loading to the soil skeleton structure became more severe. This was manifested as the progressive increase in deformation and the rapid accumulation of dissipated energy. Concurrently, the reconsolidation process reduced the extent of the energy dissipation by inhibiting misalignment and slippage among soil particles, thereby enhancing the resistance of the soft clay to subsequent dynamic loading.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109540 ISSN: 0267-7261

An accurate understanding of the cyclic behavior of clays and plastic silts is important for system performance predictions during earthquake loading. This paper presents the results of a numerical investigation into the individual and combined influences of static shear stress and viscous strength gain on the cyclic resistance of clays and plastic silts. Using the viscoplastic constitutive model PM4SiltR implemented in the finite difference program FLAC 8.1, the cyclic behaviors of the plastic soils were simulated using single-element cyclic direct simple shear simulations. A parametric analysis was performed with different combinations of viscous strength gains and static shear stresses. The effects of static shear stress and viscous strength gain varied under monotonic and cyclic loading conditions. Numerical findings suggest empirical correlations developed using scant laboratory data may not accurately predict the reduction of cyclic strengths with increasing static shear stress. Furthermore, sizable magnitudes of monotonic viscous strength gains only produced a marginal increase in cyclic strengths. The findings from this study highlight the need for future experimental laboratory testing to validate the numerical findings, to improve the accuracy of performance predictions of geosystems constructed with clays and plastic silts during and following earthquake loading.

期刊论文 2024-07-01 DOI: 10.1139/cgj-2023-0060 ISSN: 0008-3674

Rubble mound (RM) breakwaters are coastal structures constructed to provide tranquil condition around the port areas. After past earthquakes such as the 2004 Indian Ocean earthquake and the 2011 Great East Japan earthquake, it was found that stability of breakwater not only depends on the wave action but seismic motions also play an important role for this. Very limited studies are available for the stability evaluation of RM Breakwater under earthquake motions by conducting physical model tests. To the end, an attempt has been made in the study to evaluate the stability of RM breakwater subjected to earthquake loadings. A series of shaking table tests conducted to evaluate the seismic behaviour of the RM breakwater. A prototype RM breakwater is modelled on two layers of seabed foundation soil. Different amplitudes of sinusoidal seismic motions (foreshocks and main shock) are provided at the base of the model. Later, the breakwater stability was evaluated for real earthquake motions. Various parameters such as settlement, horizontal displacement, acceleration-time histories and excess pore water pressure were measured during the tests. Deformation pattern was also studied by photos and videos captured during the tests. During the mainshock, the crown wall settled by 111 % more comparable to second foreshock; and the structure laterally displaced by more than 200 % comparable with first foreshock. The peak acceleration of input wave amplified while it was travelling from bottom to the crest of breakwater. The excess pore water pressure was maximum beneath the rubble mound, in loose sand and it was five times more during the mainshock compared to first foreshock. Due to loss in bearing capacity of foundation soil, the breakwater collapsed. Also, the effects like rolling down of armor units, densification and slumping of core material, shear deformation of breakwater body were observed during the main shock. Thus, the breakwater failed during the mainshock. Numerical analyses were also executed for both sinusoidal and real earthquake motions to make clear the mechanism of the breakwater behaviour subjected to the earthquake loadings.

期刊论文 2024-03-01 DOI: 10.1016/j.soildyn.2024.108466 ISSN: 0267-7261
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页