Huaca de la Luna is a monumental earthen complex near Trujillo, Peru built by the Moche civilization from 200 to 850 C.E. Its principal structure, a stepped pyramid constructed with millions of adobe bricks on sloping bedrock and sandy soil, presents severe structural damage at the northwest corner. A sensitivity study of the static and dynamic response of the pyramid is conducted in Abaqus/CAE Explicit using 2D and 3D nonlinear finite element models derived from archaeological, material, and geotechnical data. Concrete damaged plasticity and Mohr-Coulomb formulations are adopted to represent adobe and sandy soil, respectively. Models undergo quasi-static gravitational loading followed by dynamic application of lateral ground accelerations. Lateral capacity is defined as the applied acceleration that produces collapse and is identified from the time-evolution of elastic strain and plastic dissipation energies. Initial 2D sensitivity analysis investigates the effect on lateral capacity of adobe tensile strength, bedrock/soil configuration, west fa & ccedil;ade profile, eastward architecture, and plastic dilation angle. Critical configurations identified from 2D analysis are expanded into 3D models. All results show stability under gravitational load. At dynamically induced failure, damage corresponds closely to the extant collapse of the northwest corner of the pyramid, suggesting that present damage is due to seismic activity.
3D printing has emerged as a revolutionary technology with potential applications in the construction industry. However, the prevalent use of ordinary cement in most 3D printing formulations results in significant greenhouse gas emissions during 3D printing construction. In contrast, earthen-based composites are an eco-friendly alternative for building materials. However, as a construction material, earth presents poor mechanical strength and low durability against water erosion. This study aims to obtain earthen-based composites with suitable mechanical and durability properties to investigate their extrudability and buildability in tests. It also explores the effects of incorporating short sisal fibers (l/d ratio =138.7) and chitosan (DD = 91%, Mw = 598 kDa) to improve strength and water durability in earthen-based composites for 3D printing purposes. Chitosan is a natural macromolecule derived from a waste product from the food industry, whereas sisal fibers are obtained from the Agave sisalana plant. The change in compressive strength was analyzed through uniaxial compression. Water durability was evaluated by measuring the water contact angle, total and capillary water absorption, and accelerated erosion tests. The results indicate that the use of 3.0% (w/v) aqueous solution of chitosan and 1.0% (w/w) of sisal fibers have an important effect on the hardening and water durability properties of earthen-based composites. This study suggests that these materials could serve as natural additives to enhance the mechanical properties and water durability of new eco-friendly construction materials for 3D printing. In conclusion, this study demonstrates that appropriate formulations with natural and eco-friendly additives can lead to stabilized earthen-based composites with suitable printing, mechanical and durability properties for 3D printing applications in construction materials.
As a raw material for additive construction, earth offers a multitude of benefits, from environmental and economic to social points of view. However, the fresh-state properties of printable materials and the curing conditions of additively manufactured elements make large-scale 3D-printed earthen structures susceptible to suffering severe cracking from shrinkage during drying. This project investigates the effect of soil composition and water content on the development of drying shrinkage cracking in 3D-printed earthen structures. This article presents two strategies for minimizing those cracks: decreasing the clay content of the soil by adding fine sand and decreasing the required water content for printability by using a clay dispersant agent. Earth-basedmix designs with different soil/fine-sand ratios and sodium hexametaphosphate (SHMP) contents were subjected to flow table, rotational rheology, and shrinkage cracking tests. The results indicate that the clay and water content are determining factors that minimize the appearance of cracks due to drying shrinkage. Two earthen-based formulations with zero cracks due to shrinkage resulted from replacing 50% wt. of the soil with fine sand and the addition of 0.55 and 2.20% wt. of SHMP. Further research is needed to confirm the validity of these findings across diverse soil types and curing conditions.