This paper puts forward a vibrable prefabricated vertical drain (V-PVD) that combines vibrators on PVD to alleviate the clogging on PVD and enhances the reinforcement effect of vacuum preloading method. To validate the reinforcement effect of V-PVD, a full-scale on-site test was conducted including four zones with different V-PVD installations. The ground surface settlement and pore water pressure in each zone were monitored. In addition, a comparative analysis was conducted on vane shear strength and water content before and after soil reinforcement. The test results indicates that the vibrable prefabricated vertical drain in vacuum preloading method can effectively improve the soil reinforcement effect. The ground surface settlement increased by 20.9% to 43.8% compared to conventional vacuum preloading method, and the dissipation value of pore water pressure increased by 17.1% to 58.6%, and vane shear strength increases by 5.9% to 24.5%. The activation of the vibrator helps to remove clogging around PVD, and the more vibrators installed on PVD surface, the better the soil reinforcement effect is achieved. However more vibrators installed on PVD, the drainage area on the PVD surface was influenced and drainage efficiency reduced initially, which implies that a reasonable installation of vibrator should be considered in practice.
To investigate the impact of traffic loading on the deformation characteristics of soft dredger fill, a series of dynamic triaxial tests of soft dredger fill were carried out. The deformation characteristics of the soft dredger fill under varying confining pressures and dynamic stress ratios were analyzed comparatively. The test results indicate that the cumulative plastic strain curve of the soft dredger fill exhibits three distinct patterns: destructive, critical, and stable; Based on the cumulative plastic strain development law of the dredger fill, an empirical formula of critical dynamic stress and the prediction model of cumulative plastic strain development were established, considering the influence of confining pressure. Under continuous loading, the hysteresis curve of soft dredger fill showed pronounced non-linearity, and hysteresis. Initially, the curve exhibited an ellipse shape, transitioning to a crescent shape in the middle and late stages. The higher the dynamic stress ratio, the greater the height and width of the hysteresis loop. These findings provide valuable insights into the dynamic behavior of dredger fill under traffic loading.