The vadose zone acts as a natural buffer that prevents contaminants such as arsenic (As) from contaminating groundwater resources. Despite its capability to retain As, our previous studies revealed that a substantial amount of As could be remobilized from soil under repeated wet-dry conditions. Overlooking this might underestimate the potential risk of groundwater contamination. This study quantified the remobilization of As in the vadose zone and developed a prediction model based on soil properties. 22 unsaturated soil columns were used to simulate vadose zones with varying soil properties. Repeated wet-dry cycles were conducted upon the As-retaining soil columns. Consequently, 13.9-150.6 mg/kg of As was remobilized from the columns, which corresponds to 37.0-74.6 % of initially retained As. From the experimental results, a machine learning model using a random forest algorithm was established to predict the potential for As remobilization based on readily accessible soil properties, including organic matter (OM) content, iron (Fe) content, uniformity coefficient, D30, and bulk density. Shapley additive explanation analyses revealed the interrelated effects of multiple soil prop-erties. D30, which is inter-related with Fe content, exhibited the highest contribution to As remobilization, fol-lowed by OM content, which was partially mediated by bulk density.
Rare earth elements (REEs) are a type of frequently reported emerging pollutant that affects plant growth. The harm caused by continuous exposure to low-dose REEs has rarely been studied. Quickly, accurately, and noninvasively monitoring the continuous influence of low-dose REEs on plant growth in situ is key to indicating and warning of its harm to plants and ecosystems. In this study, after continuous exposure to low-dose lanthanum [La(III), a REE] for 14 days, invisible damage occurred in leaf cells, and La accumulated continuously in the soybean plants (leaves > stems > roots > pods > seeds), causing potential human health risks. Two proteins [vitronectin-like protein (VN) and arabinogalactan proteins (AGP)] in leaf cells that bound La(III) were selected as biomarkers, and changes in these two proteins were detected by constructing dual-sensors in living leaf cells after continuous exposure to low-dose La(III) for 14 days. The results showed that the electrochemical outputs from leaf cells-the electron transfer resistance Ret(VN) and Ret(AGP)-were related to the damage indices such as MDA, chlorophyll content, electrolyte leakage, cell vitality, fresh and dry weight of leaves, and leaf area. Using this output, two warning intervals of visible damage were obtained: Ret(VN) was 8.53 %-47.22 %, and Ret(AGP) was 12.75 %-51.31 %. This study successfully demonstrated the real-time in situ detection of plant cell biomarker changes and invisible damage under low-dose La(III) exposure, providing methods for early warning monitoring of plant damage caused by low-dose continuous exposure to REEs.
Rare earth elements (REEs) have been intentionally used in Chinese agriculture since the 1980s to improve crop yields. Around the world, REEs are also involuntarily applied to soils through phosphate fertilizers. These elements are known to alleviate damage in plants under abiotic stresses, yet there is no information on how these elements act in the physiology of plants. The REE mode of action falls within the scope of the hormesis effect, with low-dose stimulation and high-dose adverse reactions. This study aimed to verify how REEs affect rice plants' physiology to test the threshold dose at which REEs could act as biostimulants in these plants. In experiment 1, 0.411 kg ha(-1) (foliar application) of a mixture of REE (containing 41.38% Ce, 23.95% La, 13.58% Pr, and 4.32% Nd) was applied, as well as two products containing 41.38% Ce and 23.95% La separately. The characteristics of chlorophyll a fluorescence, gas exchanges, SPAD index, and biomass (pot conditions) were evaluated. For experiment 2, increasing rates of the REE mix (0, 0.1, 0.225, 0.5, and 1 kg ha(-1)) (field conditions) were used to study their effect on rice grain yield and nutrient concentration of rice leaves. Adding REEs to plants increased biomass production (23% with Ce, 31% with La, and 63% with REE Mix application) due to improved photosynthetic rate (8% with Ce, 15% with La, and 27% with REE mix), favored by the higher electronic flow (photosynthetic electron transport chain) (increase of 17%) and by the higher F-v/F-m (increase of 14%) and quantum yield of photosystem II (increase of 20% with Ce and La, and 29% with REE Mix), as well as by increased stomatal conductance (increase of 36%) and SPAD index (increase of 10% with Ce, 12% with La, and 15% with REE mix). Moreover, adding REEs potentiated the photosynthetic process by increasing rice leaves' N, Mg, K, and Mn concentrations (24-46%). The dose for the higher rice grain yield (an increase of 113%) was estimated for the REE mix at 0.72 kg ha(-1).
The damage caused by petroleum hydrocarbon pollution to soil and groundwater environment is becoming increasingly significant. The vadose zone is the only way for petroleum hydrocarbon pollutants to leak from surface into groundwater. The spatial distribution characteristics of indigenous microorganisms in vadose zone, considering presence of capillary zones, have rarely been reported. To explore the spatial distribution characteristics of indigenous microorganisms in vadose zone contaminated by petroleum hydrocarbons, a onedimensional column migration experiment was conducted using n-hexadecane as characteristic pollutant. Soil samples were collected periodically from different heights during experiment. Corresponding environmental factors were monitored online. The microbial community structure and spatial distribution characteristics of the cumulative relative abundance were systematically analyzed using 16S rRNA sequencing. In addition, the microbial degradation mechanism of n-hexadecane was analyzed using metabolomics. The results showed that presence of capillary zone had a strong retarding effect on n-hexadecane infiltration. Leaked pollutants were mainly concentrated in areas with strong capillary action. Infiltration and displacement of NAPL-phase pollutants were major driving force for change in moisture content ( theta) and electric conductivity (EC) in vadose zone. The degradation by microorganisms results in a downward trend in potential of hydrogen (pH) and oxidation reduction potential (ORP). Five petroleum hydrocarbon -degrading bacterial phyla and 11 degradable straightchain alkane bacterial genera were detected. Microbial degradation was strong in the area near edge of capillary zone and locations of pollutant accumulation. Mainly Sphingomonas and Nocardioides bacteria were involved in microbial degradation of n-hexadecane. Single -end oxidation involved microbial degradation of n-hexadecane (C 16 H 34 ). The oxygen consumed, hexadecanoic acid (C 16 H 32 O 2 ) produced during this process, and release of hydrogen ions (H + ) were the driving factors for reduction of ORP and pH. The vadose zone in this study considered presence of capillary zone, which was more in line with actual contaminated site conditions compared with previous studies. This study systematically elucidated vertical distribution characteristics of petroleum hydrocarbon pollutants and spatiotemporal variation characteristics of indigenous microorganisms in vadose zone considered presence of capillary zone. In addition, the n-hexadecane degradation mechanism was elucidated using metabolomics. This study provides theoretical support for development of natural attenuation remediation measures for petroleum -hydrocarbon -contaminated soil and groundwater.
Nicosulfuron is a common herbicide used to control weeds in maize fields. In northeast China, sugar beet is often grown as a subsequent crop after maize, and its frequently suffers from soil nicosulfuron residue damage, but the related toxicity evaluation and photosynthetic physiological mechanisms are not clear. Therefore, we experimented to evaluate the impacts of nicosulfuron residues on beet growth, photochemical properties, and antioxidant defense system. The results showed that when the nicosulfuron residue content reached 0.3 mu g kg(-1), it inhibited the growth of sugar beet. When it reached 36 mu g kg(-1) (GR50), the growth stagnated. Compared to the control group, a nicosulfuron residue of 36 mu g kg(-1) significantly decreased beet plant height (70.93 %), leaf area (91.85 %), dry weights of shoot (70.34 %) and root (32.70 %). It also notably reduced the potential photochemical activity (Fv/Fo) by 12.41 %, the light energy absorption performance index (PIabs) by 46.09 %, and light energy absorption (ABS/CSm) by 6.56 %. It decreased the capture (TRo/CSm) by 9.30 % and transferred energy (ETo/CSm) by 16.13 % per unit leaf cross- while increasing the energy flux of heat dissipation (DIo/CSm) by 22.85 %. This ultimately impaired the photochemical capabilities of PSI and PSII, leading to a reduction in photosynthetic performance. Furthermore, nicosulfuron increased malondialdehyde (MDA) content while decreasing superoxide dismutase (SOD) and catalase (CAT) activities. In conclusion, this research clarified the toxicity risk level, lethal dose, and harm mechanism of the herbicide nicosulfuron residue. It provides a theoretical foundation for the rational use of herbicides in agricultural production and sugar beet planting management.
Many studies have reported modification in the degree of O3 damage to photosynthesis by elevated CO2 and soil N supply. However, the mechanism underlying the modification is unclear. To clarify the important determinants in the degree of O3 damage to net photosynthetic rate (A) in the leaves of Fagus crenata (Siebold's beech) under elevated CO2 and with different soil N supply, F. crenata seedlings were grown for two growing seasons under combinations of two O3 levels (low concentration at approximately 4 nmol mol-1 and two times the ambient concentration), two CO2 levels (ambient and 700 mu mol mol-1), and three levels of soil N supply (0, 50 and 100 kg N ha- 1 year -1). During the second growing season, we determined A, stomatal conductance for calculating phytotoxic O3 dose (POD), antioxidant concentrations, and antioxidative enzyme activities in the leaves for evaluating O3 detoxification capacity. We calculated the O3-induced reduction in mean A (Delta Amean) during the second growing season using the data reported in our previous study and plotted it against mean daily POD without flux threshold (POD0). There was no significant linear nor non-linear relationship, suggesting that not only POD0 but also O3 detoxification capacity are important determinants of Delta Amean under elevated CO2 and N supply. We found significant negative linear relationships of Delta Amean per unit POD0 (Delta Amean/POD0) with reduced ascorbate concentration in the low O3 treatment, and with percentage of O3-induced change in activity of monodehydroascorbate reductase (MDAR). In addition, the Delta Amean/POD0 was positively and significantly correlated with the activity ratio of ascorbate peroxidase to MDAR. These results suggest that reduced ascorbate pool and its maintenance through the action of MDAR could be important determinants in the degree of O3 damage to net photosynthesis under elevated CO2 and soil N supply.
The hydro-mechanical properties of the vadose zone are strongly influenced by seasonal cycles. The hydraulic behavior of this zone is determined by the coupling of biotic and abiotic factors. The biotic factors are controlled by the physiology and anatomy of the vegetation growing in the area, while the abiotic factors depend on the local soil characteristics, such as water content, void ratio, and matrix structure. In this laboratory-scale investigation, we assess the influence of active biomass, water content, and suction on the particle and pore structure rearrangement. We use x-ray computed tomography and 3D digital image correlation to quantify plant roots at different stages of growth, soil deformation, and water content fluctuations. Our results show that the bulk porosity of vegetated soil is strongly affected by the induced water cycles. The global micro-structure rearrangement due to the double effects of plant water uptake and induced drying-wetting cycles translates into a final bulk porosity increase.
Soil nitrogen is crucial for agriculture, but it is often limited, affecting crop yields. Deficiency requires synthetic fertilizers, but their improper use results in environmental damage and high costs. Bacteria of the genus Rhizobium , symbionts of legumes, offer a sustainable solution by fixing nitrogen, thus reducing dependence on fertilizers. This research determined the most probable number (MPN) of cells of Rhizobium spp. from two commercial biofertilizers of Ecuadorian and Mexican origin under greenhouse conditions. For this, direct inoculation with serial dilutions (10(-1) to 10(-10) ) was performed in pots with steam -sterilized pumice where Blue Lake variety snap bean ( Phaseolus vulgaris L.) plants were germinated. The following morphological indicators were evaluated at 45 days after sowing (DAS): leaf area, plant wet weight, plant height, and number of flowers, determining statistical differences between the type of biofertilizer and the concentration of each dilution. The experiment followed a randomized complete block design with a split -plot arrangement, with three replicates per dilution, considering temperature fluctuations in the study area. The MPN at 95% confidence was 4.45x10(7) rhizobia g -1 of pumice at a 10(-5) dilution for the Mexican biofertilizer, and 1.48x10(5) rhizobia g(-1) of pumice at a 10(-4) dilution for the Ecuadorian biofertilizer. The estimated optimal dilution for both products was 10(-8).
As climate change intensifies, soil water flow, heat transfer, and solute transport in the active, unfrozen zones within permafrost and seasonally frozen ground exhibit progressively more complex interactions that are difficult to elucidate with measurements alone. For example, frozen conditions impede water flow and solute transport in soil, while heat and mass transfer are significantly affected by high thermal inertia generated from water-ice phase change during the freeze-thaw cycle. To assist in understanding these subsurface processes, the current study presents a coupled two-dimensional model, which examines heat conduction-convection with water-ice phase change, soil water (liquid water and vapor) and groundwater flow, advective-dispersive solute transport with sorption, and soil deformation (frost heave and thaw settlement) in variably saturated soils subjected to freeze-thaw actions. This coupled multiphysics problem is numerically solved using the finite element method. The model's performance is first verified by comparison to a well-documented freezing test on unsaturated soil in a laboratory environment obtained from the literature. Then based on the proposed model, we quantify the impacts of freeze-thaw cycles on the distribution of temperature, water content, displacement history, and solute concentration in three distinct soil types, including sand, silt and clay textures. The influence of fluctuations in the air temperature, groundwater level, hydraulic conductivity, and solute transport parameters was also comparatively studied. The results show that (a) there is a significant bidirectional exchange between groundwater in the saturated zone and soil water in the vadose zone during freeze-thaw periods, and its magnitude increases with the combined influence of higher hydraulic conductivity and higher capillarity; (b) the rapid dewatering ahead of the freezing front causes local volume shrinkage within the non-frozen region when the freezing front propagates downward during the freezing stage and this volume shrinkage reduces the impact of frost heave due to ice formation. This gradually recovers when the thawed water replenishes the water loss zone during the thawing stage; and (c) the profiles of soil moisture, temperature, displacement, and solute concentration during freeze-thaw cycles are sensitive to the changes in amplitude and freeze-thaw period of the sinusoidal varying air temperature near the ground surface, hydraulic conductivity of soil texture, and the initial groundwater levels. Our modeling framework and simulation results highlight the need to account for coupled thermal-hydraulic-mechanical-chemical behaviors to better understand soil water and groundwater dynamics during freeze-thaw cycles and further help explain the observed changes in water cycles and landscape evolution in cold regions.