共检索到 3

Silicon nanoparticles (SiNPs) have emerged as multifunctional tools in sustainable agriculture, demonstrating significant efficacy in promoting crop growth and enhancing plant resilience against diverse biotic and abiotic stresses. Although their ability to strengthen antioxidant defense systems and activate systemic immune responses is well documented, the fundamental mechanisms driving these benefits remain unclear. This review synthesizes emerging evidence to propose an innovative paradigm: SiNPs remodel plant redox signaling networks and stress adaptation mechanisms by forming protein coronas through apoplastic protein adsorption. We hypothesize that extracellular SiNPs may elevate apoplastic reactive oxygen species (ROS) levels by adsorbing and inhibiting antioxidant enzymes, thereby enhancing intracellular redox buffering capacity and activating salicylic acid (SA)-dependent defense pathways. Conversely, smaller SiNPs infiltrating symplastic compartments risk oxidative damage due to direct suppression of cytoplasmic antioxidant systems. Additionally, SiNPs may indirectly influence heavy metal transporter activity through redox state regulation and broadly modulate plant physiological functions via transcription factor regulatory networks. Critical knowledge gaps persist regarding the dynamic composition of protein coronas under varying environmental conditions and their transgenerational impacts. By integrating existing mechanisms of SiNPs, this review provides insights and potential strategies for developing novel agrochemicals and stress-resistant crops.

期刊论文 2025-05-27 DOI: 10.3390/plants14111630 ISSN: 2223-7747

The effect of crop rotation on soil-borne diseases is a representative case of plant-soil feedback in the sense that plant disease resistance is influenced by soils with different cultivation histories. This study examined the microbial mechanisms inducing the differences in the clubroot (caused by Plasmodiophora brassicae pathogen) damage of Chinese cabbage (Brassica rapa subsp. pekinensis) after the cultivation of different preceding crops. It addresses two key questions in crop rotation: changes in the soil bacterial community induced by the cultivation of different plants and the microbial mechanisms responsible for the disease-suppressive capacity of Chinese cabbage. Twenty preceding crops from different plant families showed significant differences in the disease damage, pathogen density, and bacterial community composition of the host plant. Structural equation modelling revealed that the relative abundance of four key bacterial orders in Chinese cabbage roots can explain 85% and 70% of the total variation in pathogen density and disease damage, respectively. Notably, the relative dominance of Bacillales and Rhizobiales, which have a trade-off relationship, exhibited predominant effects on pathogen density and disease damage. The disease-suppressive soil legacy effects of preceding crops are reflected in compositional changes in key bacterial orders, which are intensified by the bacterial community network.

期刊论文 2024-11-01 DOI: 10.3390/microorganisms12112290

Turf-type tall fescue [Schedonorus arundinaceus (Schreb.) Dumort., nom. cons.: TTTF] is a predominant turfgrass species for lawns throughout cool-humid regions, yet brown patch (caused by Rhizoctonia and Rhizoctonia-like species) can cause severe damage during the summer months. Hypothesized strategies to help minimize brown patch severity and decrease fungicide use includes establishing TTTFs with a high level of host resistance and minimizing summer nitrogen (N) applications. A two-year field study was conducted in West Lafayette, IN to determine the influence of late-spring and summer applied N at two application rates among five TTTF cultivars. Urea-N was applied monthly at two rates from April to July, totaling to 73.5 and 245.0 kg N ha-1. Turf performance was determined using visual ratings for turf quality, relative canopy greenness, disease severity (0-100%), and seasonal brown patch as calculated by area under the disease progress curve (AUDPC). Brown patch was generally not affected by N-rate for any cultivar in either study year. While none of the TTTF cultivars had complete brown patch resistance, cultivar differences were observed, with disease severity ranging from 9.8 to 39.0% and 20.0-51.9% in 2021 and 2022, respectively. Selecting a brown patch resistant cultivar reduced seasonal brown patch severity by 61% across study years compared to the most susceptible cultivars. This study demonstrates that summer N applications to TTTF lawns should not be completely avoided to reduce brown patch as previously suggested and emphasizes the importance of host resistance for disease management.

期刊论文 2024-10-01 DOI: 10.1016/j.cropro.2024.106790 ISSN: 0261-2194
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页