共检索到 2

Southeast Tibet is characterized by extensive alpine glaciers and deep valleys, making it highly prone to cryospheric disasters such as avalanches, ice/ice-rock avalanches, glacial lake outburst floods, debris flows, and barrier lakes, which pose severe threats to infrastructure and human safety. Understanding how cryospheric disasters respond to climate warming remains a critical challenge. Using 3.3 km resolution meteorological downscaling data, this study analyzes the spatiotemporal evolution of multiple climate indicators from 1979 to 2022 and assesses their impacts on cryospheric disaster occurrence. The results reveal a significant warming trend across Southeast Tibet, with faster warming in glacier-covered regions. Precipitation generally decreases, though the semi-arid northwest experiences localized increases. Snowfall declines, with the steepest decrease observed around the lower reaches of the Yarlung Zangbo River. In the moisture corridor of the lower reaches of the Yarlung Zangbo River, warming intensifies freeze-thaw cycles, combined with high baseline extreme daily precipitation, which increases the likelihood of glacial disaster chains. In northwestern Southeast Tibet, accelerated glacier melting due to warming, coupled with increasing extreme precipitation, heightens glacial disaster probabilities. While long-term snowfall decline may reduce avalanches, high baseline extreme snowfall suggests short-term threats remain. Finally, this study establishes meteorological indicators for predicting changes in cryospheric disaster risks under climate change.

期刊论文 2025-05-05 DOI: 10.3390/atmos16050547

The Karakoram mountain range is prone to natural disasters such as glacial surging and glacial lake outburst flood (GLOF) events. In this study, we aimed to document and reconstruct the sequence of events caused by glacial debris flows that dammed the Immit River in the Hindu Kush Karakoram Range on 17 July 2018. We used satellite remote sensing and field data to conduct the analyses. The order of the events in the disaster chain were determined as follows: glacial meltwater from the G2 glacier (ID: G074052E36491N) transported ice and debris that dammed the meltwater at the snout of the G1 glacier (ID: G074103E36480N), then the debris flow dammed the Immit River and caused Lake Badswat to expand. We surveyed the extent of these events using remote sensing imagery. We analyzed the glaciers' responses to this event chain and found that the glacial debris flow induced G1 to exhibit accelerating ice flow in parts of the region from 25 July 2018 to 4 August 2018. According to the records from reanalysis data and data from the automatic weather station located 75 km from Lake Badswat, the occurrence of this disaster chain was related to high temperatures recorded after 15 July 2018. The chains of events caused by glacially related disasters makes such hazards more complex and dangerous. Therefore, this study is useful not only for understanding the formation of glacial disaster chains, but also for framing mitigation plans to reduce the risks for vulnerable downstream/upstream residents.

期刊论文 2021-05-09 DOI: http://dx.doi.org/10.3390/rs13061165
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页