共检索到 2

Bisphenols (BPs) are ubiquitous environmental endocrine disruptors that cause various human health hazards and pollute water, soil, and the atmosphere to varying degrees. Although various studies have investigated the pollution characteristics and health hazards of BPs in different media, a systematic review of BPs in the broader environmental context is still lacking. This study highlights the pollution characteristics, detection methods, and risk assessment status of BPs by combining relevant studies from both domestic and international sources, and their environmental distribution characteristics are summarized. The results show that BP pollution is a widespread and complex global phenomenon. Bisphenol A (BPA) remains the predominant component of BPs, which can damage the nervous and reproductive systems. At present, high-performance liquid chromatography-tandem mass spectrometry, high-performance liquid chromatography, and liquid chromatography-tandem mass spectrometry are the main detection methods used for BPs. BPs can also damage the reproductive system, leading to germ cell apoptosis and ovarian damage. Future research should focus on expanding the BP testing repertoire, advancing rapid detection techniques, elucidating toxic mechanisms, conducting comprehensive safety assessments, and developing systematic health risk assessment methods. These efforts will provide a scientific foundation for preventing and controlling emerging pollutants.

期刊论文 2025-02-01 DOI: 10.3390/toxics13020109

Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism. The aim of this paper is to develop a proper methodology to analyze the uncertainties of geomechanical characteristics by focusing on three domains, i.e. data treatment process, schistosity angle, and mineralogy. First, the variabilities of the geomechanical laboratory data of Westwood Mine (Quebec, Canada) were examined statistically by applying different data treatment techniques, through which the most suitable outlier methods were selected for each parameter using multiple decision-making criteria and engineering judgment. Results indicated that some methods exhibited better performance in identifying the possible outliers, although several others were unsuccessful because of their limitation in large sample size. The well-known boxplot method might not be the best outlier method for most geomechanical parameters because its calculated confidence range was not acceptable according to engineering judgment. However, several approaches, including adjusted boxplot, 2MADe, and 2SD, worked very well in the detection of true outliers. Also, the statistical tests indicate that the best-fitting probability distribution function for geomechanical intact parameters might not be the normal distribution, unlike what is assumed in most geomechanical studies. Moreover, the negative effects of schistosity angle on the uniaxial compressive strength (UCS) variabilities were reduced by excluding the samples within a specific angle range where the UCS data present the highest variation. Finally, a petrographic analysis was conducted to assess the associated uncertainties such that a logical link was found between the dispersion and the variabilities of hard and soft minerals. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/ by/4.0/).

期刊论文 2024-02-01 DOI: 10.1016/j.jrmge.2023.09.011 ISSN: 1674-7755
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页