共检索到 2

Lactic acid impregnated ground film paper was prepared using the method of lactic acid impregnation of raw paper. The physical properties, chemical composition, crystallinity, thermal stability, surface morphology of the paper, barrier properties, and light transmittance of the lactic acid paper were investigated using FT-IR, XRD, TGA, SEM, water vapor blocking, oxygen blocking, mechanical properties testing, and optical property testing. Results showed that at room temperature (20 degrees C), when lactic acid concentration was 100 %, reaction time was 48 h, and 100 degrees C high temperature drying prepared lactic acid paper, it exhibited superior performance: dry strength of 2.83 IkN/m, wet strength of 0.36 kN/m, Cobb value of 4.50 g/m2, tear of 359.42 mN, water vapor barrier of 693.46 g m-2 24 h-1, and oxygen barrier of 933.43 cm3 m-2 24 h-1. Degradation rate reached 22.94 % after two weeks of soil landfill.

期刊论文 2025-03-26 DOI: 10.1515/npprj-2024-0070 ISSN: 0283-2631

Developing biobased thermoplastic polyurethane (TPU) from renewable biomass resources is becoming urgent due to resource scarcity and environmental protection requirements. Herein, a chain extender diol (VAN-OH) containing dynamic imine bonds was synthesized using renewable biomass resource vanillin (VAN), then combined with 1,4-butanediol (BDO) in various proportions, and reacted with poly(caprolactone diol) and 4,4 '-diphenylmethane diisocyanate to synthesize degradable biobased TPU (BTPUs) with excellent performance. Fourier transform infrared, 1H NMR, X-ray diffraction, DMA, thermogravimetric analysis, molecular weight, chemical degradation, and mechanical tests systematically investigated the relationships between the polymer chain structure and the performance of BTPUs. The experimental results demonstrated that the high regularity and strong polar bonds (imine and ether) of VAN-OH enhanced the interactions between macromolecular chains and improved the hydrogen bonding combination, crystallinity, and phase separation of BTPUs, thereby exerting significant contributions to their thermomechanical and degradable properties. BVTPU1 with a mole ratio of BDO/VAN-OH = 7.5:2.5 exhibited the best mechanical performance, degradation time was 37.5% shorter, and initial pyrolysis temperature increased by 13.8% compared to BTPU0 without VAN-OH. In addition, BTPUs have shown some biodegradability and environmental friendliness in soil burial experiments under natural conditions.

期刊论文 2025-02-19 DOI: 10.1021/acsapm.4c04087 ISSN: 2637-6105
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页