Shallow foundations supporting high-rise structures are often subjected to extreme lateral loading from wind and seismic activities. Nonlinear soil-foundation system behaviors, such as foundation uplift or bearing capacity mobilization (i.e., rocking behavior), can act as energy dissipation mechanisms, potentially reducing structural demands. However, such merits may be achieved at the expense of large residual deformations and settlements, which are influenced by various factors. One key factor which is highly influential on soil deformation mechanisms during rocking is the foundation embedment depth. This aspect of rocking foundations is investigated in this study under varying subgrade densities and initial vertical factors of safety (FSv), using the PIV technique and appropriate instrumentation. A series of reduced-scale slow cyclic tests were performed using a single-degree-of-freedom (SDOF) structure model. This study first examines the deformation mechanisms of strip foundations with depth-to-width (D/B) ratios of 0, 0.25, and 1, and then explores the effects of embedment depth on the performance of square foundations, evaluating moment capacity, settlement, recentering capability, rotational stiffness, and damping characteristics. The results demonstrate that the predominant deformation mechanism of the soil mass transitions from a wedge mechanism in surface foundations to a scoop mechanism in embedded foundations. Increasing the embedment depth enhances recentering capabilities, reduces damping, decreases settlement, increases rotational stiffness, and improves the moment capacity of the foundations. This comprehensive exploration of foundation performance and soil deformation mechanisms, considering varying embedment depths, FSv values, and soil relative densities, offers insights for optimizing the performance of rocking foundations under lateral loading conditions.
Tunnelling induces stress change and displacement in the ground. The excavation of a new tunnel in stratified soil can trigger different patterns of stress redistribution, which may adversely influence nearby tunnels. Research on multi-tunnel interaction has mainly been performed on the assumption of a uniform ground. The effects of different soil stratifications on tunnelling interaction remain poorly understood. In this paper, threedimensional numerical parametric studies verified by previous centrifuge tests were carried out to analyse the twin tunnelling effects in two-layered soil. An advanced hypoplastic constitutive model that can capture stress-, path-, and strain-dependency of soil behaviour is adopted. Numerical cases investigated include perpendicular twin tunnelling in two sand layers with different relative densities and the location of the interface between the two sand layers. It is revealed that larger settlements and a wider surface settlement trough occur when tunnelling in two-layered soil strata than in a uniform ground. This is because of the wider and larger soil arch induced in two-layered soil strata. The structural response including tunnel deformation, induced bending moment, and induced hoop stress of the existing tunnel can be greater when tunnelling in layered soil strata than in a uniform ground owing to larger stress relief. Moreover, the combination of bending moment and hoop stress can exceed the M-N failure envelope of the structure in layered soil. A conventional simplified assumption of a uniform ground can underestimate of the influence of new tunnel excavation on existing tunnels, resulting in unsafe designs.