Drilling with prestressed concrete (DPC) pipe pile is a nonsqueezing pile sinking technology, employing drilling, simultaneous pile sinking, a pipe pile protection wall, and pile side grouting. The unloading induced by drilling, the pipe pile supporting effect, and the dissipation of the negative excess pore-water pressure after pile sinking, all of which have significant effects on the recovery of soil pressure on the pile side, are the main concerns of this study, which aim to establish a method to reasonably evaluate the timing selection of pile side grouting. The theoretical solutions for characterizing the unloading and dissipation of the negative excess pore-water pressure are presented based on the cylindrical cavity contraction model and the separated variable method. By inverse-analyzing the measured initial pore pressure change data from borehole unloading, initial soil pressures on the pile side of each soil layer are determined using the presented theoretical solutions. Then, the presented theoretical solutions were verified through a comparative analysis with the corresponding measured results. Moreover, by introducing time-dependent coefficients alpha(t1) and alpha(t2) to characterize the pore pressure dissipation and rheology effects, the effects of the negative excess pore-water pressure dissipation on the pile-side soil pressure recovery are discussed in detail.
This study analyzes the stability of surrounding rock for a circular opening based on the energy and cavity expansion theory, and regards the surrounding rock failure of circular opening as an unstable state driven by energy. Firstly, based on the large-strain cylindrical cavity contraction and energy dissipation method, the deformation caused by the excavation of surrounding rock is regarded as the cylindrical cavity contraction process. By introducing the energy dissipation mechanism, the energy dissipation solution of cylindrical cavity contraction is obtained. The energy dissipation process of surrounding rock is characterized by the strain energy changes in the elastic and elasto-plastic regions of this cavity contraction analysis. Secondly, the deformation control effect of support and surrounding rock parameters on the energy dissipation of surrounding rock is studied based on the energy dissipation solution of surrounding rock under support conditions. Finally, the effectiveness and reliability of the analytical approach was demonstrated by comparing the support design results with those in the literature. The research results indicate that the three-dimensional mechanical properties and dilatancy angle of rock and soil mass have a significant impact on the energy support design of surrounding rock. This study provides a general analysis method for the stability analysis of surrounding rock of deep buried tunnels and roadway.