Drought is a serious environmental challenge that reduces the productivity of valuable crops, including wheat. Brassinosteroids (BRs) is a group of phytohormones that have been used to enhance wheat drought tolerance. Wheat cultivars with different adaptation strategies could have their own specific drought tolerance mechanisms, and could react differently to treatment with growth regulators. In this work, the effect of seed pretreatment with 0.4 mu M 24-epibrassinolide (EBR) was investigated in two wheat (Triticum aestivum L.) cultivars contrasting in drought behavior, tolerant Ekada 70 (cv. E70) and sensitive Zauralskaya Zhemchuzhina (cv. ZZh), in early ontogenesis under dehydration (PEG-6000) or soil drought conditions. EBR pretreatment mitigated the stress-induced inhibition of seedling emergence and growth, as well as membrane damage in cv.E70 but not in ZZh. An enzyme-linked immunosorbent assay (ELISA) revealed substantial changes in hormonal balance associated with ABA accumulation and a drop in the levels of IAA and cytokinins (CKs) in drought-subjected seedlings of both cultivars, especially ZZh. EBR-pretreatment reduced drought-induced hormone imbalance in cv. E70, while it did not have the same effect on ZZh. EBR-induced changes in the content of wheat germ agglutinin (WGA) belonging to the protective proteins in E70 seedlings suggest its contribution to EBR-dependent adaptive responses. The absence of a detectable protective effect of EBR on the ZZh cultivar may be associated with its insensitivity to pre-sowing EBR treatment.
The threat of cadmium (Cd) stress to agricultural soil environments, as well as their productivity attracting growing global interest. Tall fescue (Festuca arundinacea Schreb.) is a strong candidate for the remediation of heavy metals in soil. However, the joint analysis of Cd tolerance, physiological responses, and multifaceted plant microbiomes in tall fescue fields has not been extensively researched. Therefore, this study employed microbial sequencing (i.e., 16S and ITS sequencing) to investigate the differences in microbial community structure among various plant compartments of Cd-resistant tall fescue (cv. 'Arid3 ') and Cd-sensitive tall fescue (cv. 'Barrington'). Furthermore, we examined the mechanism of resistance to Cd by introducing three different bacteria and a fungus that were isolated from the 'Arid3 ' rhizosheath soil. It highlighted the potential application of enriched taxa such as Delftia, Novosphingobium, Cupriavidus and Torula in enhancing the activity of antioxidant defense systems, increasing the production of osmotic regulatory substances, and stimulating the expression of Cdresistance genes. This ultimately promoted plant growth and enhanced phytoremediation efficiency. This study shed light on the response mechanism of the tall fescue microbiome to Cd stress and underscored the potential of tall fescue-microbe co-culture in the remediation of heavy metal-contaminated areas.
Damping-off disease in chili (Capsicum annum L.) cultivation is a significant global issue, severely affecting seeds, seedlings, and young plants, regardless of the location of cultivation, whether in greenhouses or open fields. Despite chili being a widely popular vegetable used in various cuisines globally, farmers face challenges in meeting the growing demand due to the extensive damage caused by this disease, ranging from 20 to 85%. The shelf life and quality of mature pods are also severely affected. Damping-off disease is mainly caused by soil-borne fungus from the Pythium species, with additional contributions from Phytophthora, Fusarium, and Rhizoctonia species. These pathogens' adaptability to diverse environmental conditions and resistance to synthetic fungicides make controlling damping-off on a commercial scale challenging. However, integrated disease management has shown promising results as a remedial approach. In this review, we discuss the current state of chili diseases, the nature of the pathogens causing damping-off, the epidemiology of the disease, and various control mechanisms. In this review, we broadly discuss the current state of chili diseases, the nature of the pathogens causing damping-off, the epidemiology of the disease, and various control mechanisms. Furthermore, we highlight the importance and efficacy of integrated disease management techniques, along with future prospects in unexplored areas, such as host-pathogen interaction and sustainable disease control measures. The information in this review aims to assist chili growers in understanding the epidemiology and management of damping-off in chili cultivation.
Southern root-knot nematode (Meloidogyne incognita) and Fusarium wilt fungus (Fusarium oxysporum) are one of the most predominant pathogens responsible for substantial agricultural yield reduction of tomato. The current study planned to assess the effects of M. incognita (Mi) and F. oxysporum (Fo) and their co-infection on two tomato cultivars, Zhongza 09 (ZZ09) and Gailing Maofen 802 (GLM802). The present study examined the effects of coinfection on leaf morphology, chlorophyll content, leaf area, and histopathology. The present study used metabolomics to evaluate plant-pathogen interactions. The outcomes of the current study revealed that chlorophyll content and leaf area decreased more in GLM802 during co-infection. In co-infection (Fo + Mi), the chlorophyll content reduction in ZZ09 was 11%, while in GLM802 the reduction reached up to 31% as compared to control. Moreover, the reduction in leaf are in ZZ09 was 31%, however, in the GLM802 reduction was observed 54% as compared to control plants. Similarly, GLM802 stems exhibited larger brown patches on their vascular bundles than ZZ09 stems. The rate of browning of GLM802 stems was 247% more than ZZ09, during coinfection. Moreover, GLM802 roots exhibited a higher abundance of hyphae and larger galls than ZZ09 roots. In metabolic studies, glutathione, succinic acid, and 2-isopropylmalic acid decreased, whereas spermine and fumaric acid increased in GLM802 co-infected stems. It indicates that GLM802 is weakly resistant; therefore, F. oxysporum and other pathogens readily damage tissue. In the co-infected stem of ZZ09, L-asparagine and shikimic acid increased, but pipecolic acid, L-saccharine, and 2-isopropylmalic acid declined. L-asparagine was crucial in preserving the stability of nitrogen metabolism, chlorophyll synthesis, and leaf growth in ZZ09. Shikimic acid's substantial accumulation could explain the limited extent of browning observed in the vascular bundles of ZZ09. Thus, the present study provides insight into M. incognita and F. oxysporum co-infection in two tomato cultivars, which may aid breeding efforts to generate commercially viable resistant cultivars. However, further research on the relationship between M. incognita and F. oxysporum in different host plants is required in the future.
Red rice ( Oryza glaberrima L.) is a main food ingredient with some special characteristics and health benefits; therefore, enhancing its grain yield is necessary. However, the limited fertile land causes cultivation in the sub-optimal land, such as saline soil. Saline stress can cause damage to plant cells; hence, it is vital to apply exogenous antioxidants that can act as osmoprotectants. The presented study sought to determine the physiological characteristics of red rice under salinity stress conditions with ascorbic acid applications. The study commenced in a factorial separate plot design (SPD) with three features. The salinity levels (3-4 and >4-5 mho/cm) comprised the main plots, red rice cultivars (Inpari 24, Inpari 7, Pamelen, and MSP17) in the subplots, with the ascorbic acid concentrations (0, 500, 1000, and 1500 ppm) kept in the sub-sub-plots. The results showed that the studied red rice cultivars differed in responses to ascorbic acid concentrations under saline soil conditions. Cultivar MSP17 was the most tolerant genotype to salinity stress compared with the three other red rice cultivars based on physiological attributes. Applying ascorbic acid improved red rice genotypes' physiological characteristics (especially chlorophyll content and nutrient uptake) under saline stress conditions.
Phytotoxicity refers to the capacity of chemical substances or environmental factors to have a negative impact on plants. This is a crucial issue in both the context of crop cultivation and environmental protection. The research results were based on a 3-year field experiment conducted at an experimental station in Jadwisin (52 degrees 28 ' N, 21 degrees 02 ' E) on loamy soil. The experiment was set up using a randomized sub-block design in a split-split-plot arrangement with three replications. The first-order factor consisted of potato cultivars, while the second-order factors were weed control methods: (1) without protection; (2) mechanical weed control, extensive mechanical treatments to close rows; (3) Sencor 70 WG-pre-emergence (PRE) of potatoes; (4) Sencor 70 WG + Titus 25 WG + Trend 90 EC-PRE of potatoes; (5) Sencor 70 WG-post-emergence (POST) of potatoes; (6) Sencor 70 WG + Titus 25 WG + Trend 90 EC-POST of potatoes; (7) Sencor 70 WG + Fusilade Forte 150 EC-POST of potatoes; and (8) Sencor 70 WG + Apyros 75 WG + Atpolan 80 SC-POST of potatoes. The phytotoxic effects of herbicides on potato plants and weeds were assessed every 7 days, starting from the date when the first signs of damage appeared until they stabilized or disappeared. Phytotoxic damage to potato and weed plants was caused by the chemical weed control methods used. The response of potato plants to herbicides was significantly related to the genetic traits of the cultivars and meteorological conditions in the years of research. Phytotoxicity is an important aspect in both agriculture and environmental protection. Research on its mechanisms and impact will enable the development of effective plant protection strategies and the preservation of ecosystem balance.