共检索到 2

Rock permeability, an important factor in subsurface fluid migration, can be influenced by microcracks and chemical weathering due to water-rock interactions. Understanding the relationship between permeability, chemical weathering, and microcracks is crucial for assessing fluid flow in rocks. This study focuses on the hydrogeological characteristics of granite and gneiss, potential host rocks for high-level radioactive waste disposal in South Korea. Samples were analyzed for permeability, porosity, P-wave velocity, and chemical weathering indices. Regression analysis revealed a weak correlation between permeability and both porosity and rock density, while an inverse correlation was observed between permeability and chemical weathering indices. Interestingly, some samples showed low permeability (10-21 to 10-22 m2) despite high weathering, while others showed high permeability (10-18 to 10-19 m2) despite low weathering. SEM-EDS analysis indicated the presence of microcracks within the rocks or the filling of these cracks with secondary minerals. The findings suggest that chemical weathering generally increases pore size and porosity, but actual permeability can vary depending on the presence and connectivity of microcracks and the extent to which they are filled with secondary minerals. Therefore, both chemical weathering and microcrack connectivity must be considered when evaluating the hydrogeological characteristics of crystalline rocks.

期刊论文 2024-10-01 DOI: 10.3390/w16203007

The presence of discontinuities (e.g. faults, fractures, veins, layering) in crystalline rocks can be challenging for seismic interpretations because the wide range of their size, orientation, and intensity, which controls the mechanical properties of the rock and elastic wave propagation, resulting in equally varying seismic responses at different scales. The geometrical characterisation of adjacent outcrop discontinuity networks allows a better understanding of the nature of the subsurface rocks and aids seismic interpretation. In this study, we characterise the discontinuity network of the Balmuccia peridotite (BP) in the Ivrea-Verbano Zone (IVZ), northwestern Italy. This geological body is the focus of the Drilling the Ivrea -Verbano zonE (DIVE), an international continental scientific drilling project, and two active seismic surveys, SEismic imaging of the Ivrea ZonE (SEIZE) and high-resolution SEIZE (Hi-SEIZE), which aim to resolve the subsurface structure of the DIVE drilling target through high-resolution seismic imaging. For fracture characterisation, we developed two drone-based digital outcrop models (DOMs) at two different resolutions (10-3-10 m and 10-1-103 m), which allowed us to quantitatively characterise the orientation, size, and intensity of the main rock discontinuities. These properties affect the seismic velocity and consequently the interpretation of the seismic data. We found that (i) the outcropping BP discontinuity network is represented by three more sets of fractures with respect to those reported in the literature; (ii) the discontinuity sizes follow a power-law distribution, indicating similarity across scales, and (iii) discontinuity intensity is not uniformly distributed along the outcrop. Our results help to explain the seismic behaviour of the BP detected by the SEIZE survey, suggesting that the low P-wave velocities observed can be related to the discontinuity network, and provide the basic topological parameters (orientation, density, distribution, and aperture) of the fracture network unique to the BP. These, in turn, can be used for interpretation of the Hi-SEIZE seismic survey and forward modelling of the seismic response. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-10-01 DOI: 10.1016/j.jrmge.2024.03.012 ISSN: 1674-7755
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页