共检索到 2

The Moon encountered an extreme space weather event (NOAA G5 class) on 10 May 2024, caused by a series of coronal mass ejections (CMEs). Chandra's Atmospheric Composition Explorer-2 (CHACE-2), a neutral gas mass spectrometer on board Chandrayaan-2 orbiter, made in situ observations of the lunar exosphere during this period. Observations show an increase in total pressure around the arrival time of the CME impact on the Moon. The corresponding total number densities derived from these observations show an enhancement in the total number densities by more than an order of magnitude. The increase in lunar exospheric number densities by a factor > 10, due to the solar wind ion sputter process, is consistent with earlier theoretical modeling. This is the first observational confirmation of the enhancement in lunar exospheric densities during a CME impact.

期刊论文 2025-07-30 DOI: 10.1029/2025GL115737 ISSN: 0094-8276

While the Earth and Moon are generally similar in composition, a notable difference between the two is the apparent depletion in moderately volatile elements in lunar samples. This is often attributed to the formation process of the Moon, and it demonstrates the importance of these elements as evolutionary tracers. Here we show that paleo space weather may have driven the loss of a significant portion of moderate volatiles, such as sodium and potassium, from the surface of the Moon. The remaining sodium and potassium in the regolith is dependent on the primordial rotation state of the Sun. Notably, given the joint constraints shown in the observed degree of depletion of sodium and potassium in lunar samples and the evolution of activity of solar analogs over time, the Sun is highly likely to have been a slow rotator. Because the young Sun's activity was important in affecting the evolution of planetary surfaces, atmospheres, and habitability in the early Solar System, this is an important constraint on the solar activity environment at that time. Finally, as solar activity was strongest in the first billion years of the Solar System, when the Moon was most heavily bombarded by impactors, evolution of the Sun's activity may also be recorded in lunar crust and would be an important well-preserved and relatively accessible record of past Solar System processes.

期刊论文 2019-05-01 DOI: 10.3847/2041-8213/ab18fb ISSN: 2041-8205
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页