Drought stress is becoming a structural phenomenon in cropping systems challenged by climate change and soil fertility degradation. A balanced fertilization strategy based on nitrogen, phosphorus, and potassium as well as on silicon supplementation was tested as an efficient practice to improve maize tolerance to short-term drought stress. Three fertilization strategies (control: treatment with zero NPK fertilizer application; NPK: granular NPK fertilizer, and NPK + Si: granular NPK fertilizer enriched with 5% silicon) were evaluated under three irrigation regimes simulating three probable water deficit levels in the Mediterranean climate (I1, well-watered conditions: 80% of soil field capacity; I2, medium drought stress: 60% of soil field capacity; and I3, severe drought stress: 30% of soil field capacity). Drought stress was applied at V10 growth stage of maize and maintained for 15 days, then plants were rewatered according to the optimal irrigation regime. Results showed that medium and severe drought stress down-regulated maize plant growth and yield, especially under nutrient deficient conditions (control). Plants amended with NPK and NPK + Si recorded higher chlorophyll a pigment content (+ 22 to + 64%), stomatal conductance (+ 6 to 24%), and leaf relative water content (+ 7 to 23%) than those of the control, depending on the drought stress level. Silicon supplementation attenuated the down-regulation effects of drought stress on maize photosynthesis and biomass accumulation by improving stomatal conductance and electron transfer efficiency between PSII and PSI. Silicon supply improved the performance index for energy conservation from photons absorbed by PSII to the reduction of intersystem electron acceptors (PIabs) and reduced the dissipation energy flux (DIo/RC), responsible for the protection of PSII from photo-damage under drought stress, which resulted in significant enhancement of maize photosynthesis recovery and grain yield (+ 59 to 69%). Findings from the present study demonstrate that granular NPK-fertilizer fortified with silicon could be an efficient strategy to increase maize photosynthesis performance, plant growth, and productivity under short-term drought stress conditions.
Evapotranspiration (ET) is a critical component of the soil-plant-atmosphere continuum, significantly influencing the water and energy balance of ecosystems. However, existing studies on ET have primarily focused on the growing season or specific years, with limited long-term analyses spanning decades. This study aims to analyse the components of ET within the alpine ecosystem of the Heihe River Basin, specifically investigating the dynamics of vegetation transpiration (T) and soil evaporation (Ev). Utilizing the SPAC model and integrating meteorological observations and eddy covariance data from 2013 to 2022, we investigate the impact of solar radiation and vegetation dynamics on ET and its partitioning (T/ET). The agreement between measured and simulated energy fluxes (net radiation and latent energy flux) and soil temperature underscores the validity of the model's performance. Additionally, a comparison employing the underlying water use efficiency method reveals consistent T/ET values during the growing season, further confirming the model's accuracy. Results indicate that the annual average T/ET during the 10-year study period is 0.41 +/- 0.03, close to the global average but lower than in warmer, humid regions. Seasonal analysis reveals a significant increase in T/ET during the growing season (April to October), particularly in May and June, coinciding with the thawing of permafrost and increased soil moisture. In addition, the study finds that the leaf area index and canopy stomatal conductance exhibit a logarithmic relationship with T/ET, whereas soil temperature and downward longwave radiation show an exponential relationship with T/ET. This study highlights the importance of understanding the stomatal conductance dynamics and their controls of transpiration process within alpine ecosystems. By providing key insights into the hydrological processes of these environments, it offers guidance for adapting to climate change impacts.
Maize (Zea mays L.) is an important cereal crop grown in arid and semiarid regions of the world. During the reproductive phase, it is more frequently exposed to drought stress, resulting in lower grain yield due to oxidative damage. Selenium and zinc oxide nanoparticles possess inherent antioxidant properties that can alleviate drought-induced oxidative stress by the catalytic scavenging of reactive oxygen species, thereby protecting maize photosynthesis and grain yield. However, the effect of zinc selenide quantum dots (ZnSe QDs) under drought stress was not been quantified. Hence, the aim of this study was to quantify the (i) toxicity potential of ZnSe QDs and (ii) drought mitigation potential of ZnSe QDs by assessing the transpiration rate, photosynthetic rate, oxidant production, antioxidant enzyme activity and seed yield of maize under limited soil moisture levels. Toxicity experiments were carried out with 0 mg L-1 to 500 mg L-1 of ZnSe QDs on earthworms and azolla. The results showed that up to 20 mg L-1, the growth rates of earthworms and azolla were not affected. The dry-down experiment was conducted with three treatments: foliar spray of (i) water, (ii) ZnSe QDs (20 mg L-1), and (iii) combined zinc sulfate (10 mg L-1) and sodium selenate (10 mg L-1). ZnSe or Se applications under drying soil reduced the transpiration rate compared to water spray by partially closing the stomata. ZnSe application at 20 mg L-1 at the tasselling stage significantly increased the photosynthetic rate (25%) by increasing catalase (98%) and peroxidase (85%) enzyme activity and decreased the hydrogen peroxide (23%) content compared to water spray, indicating that premature leaf senescence was delayed under rainfed conditions. ZnSe spray increased seed yield (26%) over water spray by increasing the number of seeds cob-1 (42%). The study concluded that foliar application of ZnSe (20 mg L-1) could decrease drought-induced effects in maize.
Heavy metal contamination increases plant susceptibility to both biotic and abiotic stresses. However, the comprehensive impact of heavy metal pollution on plant hydraulics, which is crucial for plant productivity, and the interaction between heavy metal stress and environmental factors on plant health are not yet fully understood. In this study, we investigated the effects of cadmium exposure on plant-water relations and hydraulics of Solanum lycopersicum L., cultivar Piccadilly. Particular attention was given to leaf hydraulic conductance (KL) in response to cadmium pollution and dehydration. Cadmium exposure exhibited negligible impacts on tomato productivity but resulted in significant differences in pressure-volume derived traits. Leaves and roots of Cd-treated plants showed reduced wall stiffness compared to control samples. However, Cd-treated leaves had a less negative turgor loss point (Psi tlp), whereas Cd-treated roots exhibited more negative Psi tlp values due to lower osmotic potential at full turgor compared to control samples. Leaves and root cells of Cd-treated plants showed higher values of saturated water content compared to control plants, along with a distinct mineral profile between the two experimental groups. Despite similar leaf water potential thresholds for 50% and 80% loss of KL in control and cadmium-treated leaves, plants grown in cadmium-polluted soil showed higher leaf cell damages even under well watered conditions. This, in turn, affected the plant ability to recover from drought upon rehydration by compromising cell rehydration ability. Overall, the present findings suggest that under conditions of low water availability, cadmium pollution increases the risk of leaf hydraulic failure.
The miniature time-of-flight mass spectrometer (TOF-MS) is a crucial instrument for detecting water ice in Chinese Lunar Exploration Program, so it is necessary to compare its detection results for pure water vapor and water vapor-binary gas (such as H2O-N2, H2O-CH4, and H2O-Ar) to evaluate its water detection performance. The throughput must be calculated using the measured conductance to test the miniature TOF-MS. According to the V Delta p method, the p Delta t method, whose uncertainty is less than 14.2%, is proposed to measure orifice conductance for water vapor-binary gas, and an apparatus was developed based on those two methods. The orifice conductance of four kinds of pure gases (N2, H2O, CH4, and Ar) was measured using those two methods separately, and the measurement results allowed the conductance of the water vapor-binary gas to be calculated through the Equivalent Single Gas method. The conductance of the water vapor-binary gas was measured using the p Delta t method, and the difference between the calculated and measured results is less than 7%. Hence, the measured conductance allows the miniature TOF-MS to be tested for the water vapor-binary gas. As throughput is from 10-9 to 10-6 Pa m3 s-1, the difference between the test signals of water vapor-binary gas and pure water vapor is less than 40%.
Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree species Populusfremontii were studied in a controlled common garden during a record summer heatwave-where air temperature exceeded 48 degrees C. When water was not limiting, all genotypes cooled leaves 2 to 5 degrees C below air temperatures. Homeothermic cooling was disrupted for weeks following a 72- h reduction in soil water, resulting in leaf temperatures rising 3 degrees C above air temperature and 1.3 degrees C above leaf thresholds for physiological damage, despite the water stress having little effect on leaf water potentials. Tradeoffs between leaf thermal safety and hydraulic safety emerged but, regardless of water use strategy, all genotypes experienced significant leaf mortality following water stress. Genotypes from warmer climates showed greater leaf cooling and less leaf mortality after water stress in comparison with genotypes from cooler climates. These results illustrate how brief soil water limitation disrupts leaf thermal regulation and potentially compromises plant survival during extreme heatwaves, thus providing insight into future scenarios in which ecosystems will be challenged with extreme heat and unreliable soil water access.
Low P (LP) levels in leaves can affect their photosynthetic N-use efficiency (PNUE), internal N allocation, and mesophyll conductance to CO2 (gm). The changes in leaf internal N allocation and gm in N-fixing trees and the consequent changes in PNUE under low soil P treatments are not well understood. In this study, we exposed seedlings of Dalbergia odorifera, Erythrophleum fordii (N-fixing trees), Castanopsis hystrix, and Betula alnoides (non-N-fixing trees) to three levels of soil P. The effects were not consistent among species, and LP had no specific effect on N-fixing species. Saturated net CO(2 )assimilation rate (A(sat)) values in D. odorifera and C. hystrix were remarkably lower under LP than under high P (HP) because Cc in D. odorifera and V-cmax and J(max) in C. hystrix were reduced. N-area values in D. odorifera and C. hystrix were also reduced under LP, and the degree of reduction of N-area was larger than that of A(sat), which resulted in decreased PNUE in these species. PR and gm in D. odorifera and PR, PB, and gm in C. hystrix significantly decreased under LP and were internal factors affecting the variation in PNUE in these two trees. PCW was significantly and linearly related to PR only in C. hystrix, indicating that more N was invested in the cell walls to resist the damage caused by low soil P, at the expense of Rubisco N. Our results showed that soil P deficiency affected leaf N utilization, photosynthetic efficiency, and seedling growth.
Key messageThe high-wood-density species displays greater water limitation tolerance, as it maintains leaf transpiration under drought conditions.AbstractThe relationship between environmental conditions and plant hydraulic safety is essential to understand species' strategies to minimize damage to their hydraulic structure yet maintain function. In the Brazilian semi-arid, the relationships between rainfall seasonality, hydraulic conductivity, wood density, stomatal conductance, and phenology in different species still needs to be clarified. To better understand these relationships, we selected two deciduous trees species with contrasting wood density: (1) Commiphora leptophloeos (Mart.) J.B. Gillett (low wood density) and (2) Cenostigma pyramidale (Tul.) E. Gagnon & G. P. Lewis (high wood density) from the Caatinga dry forest of northeast Brazil. We tracked monthly measurements of whole-tree hydraulic conductivity, leaf stomatal conductance, leaf transpiration rate, xylem water potential, and phenology. We found that the low-wood-density species had a higher whole-tree hydraulic conductivity and an early leaf flush and fall. In addition, lower leaf transpiration rate and higher water storage capacity maintained high xylem water potential and stomatal conductance values, especially in the rainy season. On the other hand, the high-wood-density species had a lower whole-tree hydraulic conductivity and higher leaf transpiration rate, even during the dry season. These results point to the divergent hydraulic strategies employed by each species, further suggesting opposing hydraulic safety pathways during drought.
Penstemon, with more than 250 species native to North America, holds signi fi cant aesthetic and ecological value in Utah, supporting diverse pollinators. Despite their signi fi cance, the survival of penstemon is threatened by challenges such as habitat loss, climate change, and Utah ' s naturally high soil salinity. To address these challenges and understand their adaptability, this study evaluated the salt tolerance of two penstemon species [ Penstemon davidsonii (Davidson ' s penstemon) and Penstemon heterophyllus (foothill penstemon)] under controlled greenhouse conditions. The aim was to develop baseline information for nursery production and landscape use that utilize reclaimed water for irrigation. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.0 dSm - 1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dSm - 1 for 8 weeks. Half of the plants were harvested after four irrigation events, and the remaining plants were harvested after eight irrigation events. At harvest, visual rating (0 = dead and 5 = excellent without foliage salt damage), plant width, number of shoots, leaf area, shoot dry weight, leaf greenness [Soil Plant Analysis Development (SPAD)], stomatal conductance, and canopy temperature were collected to assess the impact of salinity stress. In both species, salt damage was dependent on the salinity levels and length of exposure. After four irrigation events, both species exhibited foliage damage that increased in severity with rising EC. The most severe damage was observed in plants receiving saline solution at an EC of 10.0 dSm - 1 . After eight irrigation events, P. davidsonii exposed to a saline solution with an EC of 10.0 dSm - 1 received a visual rating of 0, whereas P. heterophyllus had a visual rating of 0.4. Both species exhibited salinity -induced effects, with variations observed in the speci fi c parameters and the degree of response. Penstemon davidsonii exhibited signi fi - cant salinity stress, as indicated by reduced leaf area, shoot dry weight, SPAD reading, and stomatal conductance with increasing EC of the saline solution. In addition, in both species, at both harvests, canopy temperatures increased either linearly or quadratically by 8% to 36% as the EC levels of the saline solution increased. These results indicate that P. davidsonii was more sensitive to salinity stress than P. heterophyllus .
center dot Stomatal closure under high VPDL (leaf to air vapour pressure deficit) is a primary means by which plants prevent large excursions in transpiration rate and leaf water potential (Psi(leaf)) that could lead to tissue damage. Yet, the drivers of this response remain controversial. Changes in Psi(leaf) appear to drive stomatal VPDL response, but many argue that dynamic changes in soil-to-leaf hydraulic conductance (Ks-l) make an important contribution to this response pathway, even in well-hydrated soils. center dot Here, we examined whether the regulation of whole plant stomatal conductance (g(c)) in response to typical changes in daytime VPDL is influenced by dynamic changes in Ks-l. We use well-watered plants of two species with contrasting ecological and physiological features: the herbaceous Arabidopsis thaliana (ecotype Columbia-0) and the dry forest conifer Callitris rhomboidea. center dot The dynamics of Ks-l and g(c) were continuously monitored by combining concurrent in situ measurements of Psi(leaf) using an open optical dendrometer and whole plant transpiration using a balance. Large changes in VPDL were imposed to induce stomatal closure and observe the impact on Ks-l. center dot In both species, g(c) was observed to decline substantially as VPDL increased, while Ks-l remained stable. Our finding suggests that stomatal regulation of transpiration is not contingent on a decrease in Ks-l. Static Ks-l provides a much simpler explanation for transpiration control in hydrated plants and enables simplified modelling and new methods for monitoring plant water use in the field.