共检索到 744

Soil freeze-thaw state influences multiple terrestrial ecosystem processes, such as soil hydrology and carbon cycling. However, knowledge of historical long-term changes in the timing, duration, and temperature of freeze-thaw processes remains insufficient, and studies exploring the combined or individual contributions of climatic factors-such as air temperature, precipitation, snow depth, and wind speed-are rare, particularly in current thermokarst landscapes induced by abrupt permafrost thawing. Based on ERA5-Land reanalysis, MODIS observations, and integrated thermokarst landform maps, we found that: 1) Hourly soil temperature from the reanalysis effectively captured the temporal variations of in-situ observations, with Pearson' r of 0.66-0.91. 2) Despite an insignificant decrease in daily freeze-thaw cycles in 1981-2022, other indicators in the Qinghai-Tibet Plateau (QTP) changed significantly, including delayed freezing onset (0.113 d yr- 1), advanced thawing onset (-0.22 d yr- 1), reduced frozen days (-0.365 d yr- 1), increased frozen temperature (0.014 degrees C yr- 1), and decreased daily freeze-thaw temperature range (-0.015 degrees C yr- 1). 3) Total contributions indicated air temperature was the dominant climatic driver of these changes, while indicators characterizing daily freeze-thaw cycles were influenced mainly by the combined effects of increased precipitation and air temperature, with remarkable spatial heterogeneity. 4) When regionally averaged, completely thawed days increased faster in the thermokarstaffected areas than in their primarily distributed grasslands-alpine steppe (47.69%) and alpine meadow (22.64%)-likely because of their stronger warming effect of precipitation. Locally, paired comparison within 3 x 3 pixel windows from MODIS data revealed consistent results, which were pronounced when the thermokarst-affected area exceeded about 38% per 1 km2. Conclusively, the warming and wetting climate has significantly altered soil freeze-thaw processes on the QTP, with the frozen soil environment in thermokarstaffected areas, dominated by thermokarst lakes, undergoing more rapid degradation. These insights are crucial for predicting freeze-thaw dynamics and assessing their ecological impacts on alpine grasslands.

期刊论文 2025-06-30 DOI: 10.1016/j.catena.2025.108936 ISSN: 0341-8162

Study region: The Qinghai Lake basin, including China's largest saltwater lake, is located on the Qinghai-Tibetan Plateau (QTP). Study focus: This study focuses on the hydrological changes between the past (1971-2010) and future period (2021-2060) employing the distributed hydrological model in the Qinghai Lake basin. Lake evaporation, lake precipitation, and water level changes were estimated using the simulations driven by corrected GCM data. The impacts of various factors on the lake water levels were meticulously quantified. New hydrological insights: Relative to the historical period, air temperatures are projected to rise by 1.72 degrees C under SSP2-4.5 and by 2.21 degrees C under SSP5-8.5 scenarios, and the future annual precipitation will rise by 34.7 mm in SSP2-4.5 and 44.1 mm in SSP5-8.5 in the next four decades. The ground temperature is projected to show an evident rise in the future period, which thickens the active layer and reduces the frozen depth. The runoff into the lake is a pivotal determinant of future water level changes, especially the runoff from the permafrost degradation region and permafrost region dominates the future water level changes. There will be a continuous rapid increase of water level under SSP5-8.5, while the water level rising will slow down after 2045 in the SSP2-4.5 scenario. This study provides an enhanced comprehension of the climate change impact on QTP lakes.

期刊论文 2025-06-01 DOI: 10.1016/j.ejrh.2025.102425

The fine-scale controls of active layer dynamics remain poorly understood, particularly at the southern boundary of continuous permafrost. We examined how environmental conditions associated with upland tundra heath, open graminoid fen, and palsa/peat plateau landforms affected active layer thermal regime (timing, magnitude, and rate of thaw) in a subarctic peatland in the Hudson Bay Lowlands, Canada. A significant increase in active layer thaw depth was evident between 2012 and 2024. Within-season thaw patterns differed among landforms, with tundra heath exhibiting the highest thaw rates and soil temperatures, succeeded by fen and palsa. Air temperature mediated by soil properties, topography, and vegetation affected thaw patterns. The increased thermal conductivity of gravel/sandy tundra heath soils exerted a more pronounced influence on thaw patterns relative to fens and palsas, both of which had a thicker organic layer. Near-surface soil moisture was the lowest in tundra, followed by palsas, and fens. Increased soil moisture impeded active layer thaw, likely due to a combination of soil surface evaporation and meltwater percolation. These findings elucidate the relationship between the biophysical properties of landform features and climate, revealing their role in influencing active layer thaw patterns in a subarctic ecosystem.

期刊论文 2025-05-16 DOI: 10.1139/facets-2024-0250 ISSN: 2371-1671

Climate change impacts water supply dynamics in the Upper Rio Grande (URG) watersheds of the US Southwest, where declining snowpack and altered snowmelt patterns have been observed. While temperature and precipitation effects on streamflow often receive the primary focus, other hydroclimate variables may provide more specific insight into runoff processes, especially at regional scales and in mountainous terrain where snowpack is a dominant water storage. The study addresses the gap by examining the mechanisms of generating streamflow through multi-modal inferences, coupling the Bayesian Information Criterion (BIC) and Bayesian Model Averaging (BMA) techniques. We identified significant streamflow predictors, exploring their relative influences over time and space across the URG watersheds. Additionally, the study compared the BIC-BMA-based regression model with Random Forest Regression (RFR), an ensemble Machine Learning (RFML) model, and validated them against unseen data. The study analyzed seasonal and long-term changes in streamflow generation mechanisms and identified emergent variables that influence streamflow. Moreover, monthly time series simulations assessed the overall prediction accuracy of the models. We evaluated the significance of the predictor variables in the proposed model and used the Gini feature importance within RFML to understand better the factors driving the influences. Results revealed that the hydroclimate drivers of streamflow exhibited temporal and spatial variability with significant lag effects. The findings also highlighted the diminishing influence of snow parameters (i. e., snow cover, snow depth, snow albedo) on streamflow while increasing soil moisture influence, particularly in downstream areas moving towards upstream or elevated watersheds. The evolving dynamics of snowmelt-runoff hydrology in this mountainous environment suggest a potential shift in streamflow generation pathways. The study contributes to the broader effort to elucidate the complex interplay between hydroclimate variables and streamflow dynamics, aiding in informed water resource management decisions.

期刊论文 2025-05-01 DOI: 10.1016/j.jhydrol.2025.132684 ISSN: 0022-1694

Permafrost degradation is one of the most significant consequences of climate change in the Arctic. During summers, permafrost degradation is evident with cryospheric hazards like retrogressive thaw slumps (RTSs) and active layer detachment slides (ALDs). In parallel, the Arctic has become a popular tourist destination for nature-based activities, with summer being the peak touristic season. In this context, cryospheric hazards pose potential risks for tourists' presence in Arctic national parks and wilderness in general, like in the Yukon. This essay provides the basis for investigating further periglacial, geomorphological and tourism intersections, highlighting the critical need for future interdisciplinary research on thawing permafrost impacts. More so, this requires moving beyond the predominant focus on permafrost impacts on infrastructure and to also consider the direct threats posed to human physical presence in Arctic tourist destinations affected by permafrost degradation. Such interdisciplinary approach is critical not only to mitigate risks, but also to provide policy- and decision-makers with valuable insights for implementing measures and guidelines.

期刊论文 2025-05-01 DOI: 10.1007/s10584-025-03942-3 ISSN: 0165-0009

Ongoing and widespread permafrost degradation potentially affects terrestrial ecosystems, whereas the changes in its effects on vegetation under climate change remain unclear. Here, we estimated the relative contribution of progressive active layer thickness (ALT) increases to vegetation gross primary productivity (GPP) in the northern permafrost region during the 21st century. Our results revealed that ALT changes accounted for 40% of the GPP increase in the permafrost region during 2000-2021, with amplified effects observed in late growing season (September-October) (43.2%-45.4%) and was especially notable in tundra ecosystems (51%-52.6%). However, projections indicated that this contribution could decrease considerably in the coming decades. Model simulations suggest that once ALT increments (relative to the 2001-2021 baseline) reach approximately 90 cm between 2035 and 2045, the promoting effect of ALT increase on vegetation growth may disappear. These findings provide crucial insights for accurately modelling and predicting ecosystem carbon dynamics in northern high latitudinal regions.

期刊论文 2025-05-01 DOI: 10.1088/1748-9326/adca48 ISSN: 1748-9326

The Tibetan Plateau (TP) covers the largest regions under low- and mid-latitude permafrost. The evolution of permafrost has significantly affected the hydrology, biogeochemistry, and infrastructure of Asia. However, model reconstructions of long-term permafrost evolution with high accuracy and reliability are insufficient. Here, spatial changes in mean annual ground temperature at the depth where the annual amplitude is zero (MAGT) on the TP since 1981 were modeled and validated based on temperature records from 155 boreholes, and future changes were predicted under scenarios from the Climate Model Intercomparison Project 6 (CMIP6). The results indicated that the MAGT on the TP was approximately 1.5 degrees C (2010 - 2018), and the corresponding permafrost extent on the TP is estimated to be approximately 1.03 x 106 km2, which is projected to decrease to 0.77 x 106, 0.50 x 106, 0.30 x 106, and 0.17 x 106 km2 under the scenarios of shared socioeconomic pathway (SSP)126, SSP245, SSP370, and SSP585, respectively, by 2100. As predicted in the SSP585 scenario, permafrost is predicted to largely disappear from many basins of major Asian rivers, such as the Yarlung Zangpo-Brahmaputra, NuSalween, and Lancang-Mekong Rivers, between 2041 and 2060, followed by the Yellow and Yangtze Rivers between 2061 and 2080. Moreover, the original stable permafrost in the West Kunlun Mountains will change to transitional and unstable conditions. Our study offers comprehensive datasets of year-to-year ground temperatures and permafrost extent maps for the TP, which can serve as a fundamental resource for further investigations on the hydrogeology, engineering geology, ecology, and geochemistry of the TP.

期刊论文 2025-05-01 DOI: 10.1016/j.geoderma.2025.117287 ISSN: 0016-7061

Freeze-thaw-induced N2O pulses could account for nearly half of annual N2O fluxes in cold climates, but their episodic nature, sensitivity to snow cover dynamics, and the challenges of cold-season monitoring complicate their accurate estimation and representation in global models. To address these challenges, we combined in situ automated high-frequency flux measurements with cross-ecoregion soil core incubations to investigate the mechanisms driving freeze-thaw-induced N2O emissions. We found that deepened snow significantly amplified freeze-thaw N2O pulses, with these similar to 50-day episodes contributing over 50% of annual fluxes. Additionally, freeze-thaw-induced N2O pulses exhibited significant spatial heterogeneity, ranging from 3.4 to 1184.1 mu g N m(-2) h(-1) depending on site conditions. Despite significant spatiotemporal variation, our results indicated that 68%-86% of this variation can be explained by shifts in controlling factors: from water-filled pore space (WFPS), which drove anaerobic conditions, to microbial constraints as snow depth increases. Below 43% WFPS, soil moisture was the overwhelmingly dominant driver of emissions; between 43% and 66% WFPS, moisture and microbial attributes (including denitrifying gene abundance, nitrogen enzyme kinetics, and microbial biomass) jointly triggered N2O emissions pulses; above 66% WFPS, microbial attributes, particularly nitrogen enzyme kinetics, prevailed. These findings suggested that maintaining higher soil moisture served as a trigger for activating microbial activity, particularly enhancing nitrogen cycling. Furthermore, we showed that hotspots of freeze-thaw-induced N2O emissions were linked to high root production and microbial activity in cold and humid grasslands. Overall, our study highlighted the hierarchical control of WFPS and microbial processes in driving freeze-thaw-induced N2O emission pulses. The easily measurable WFPS and microbial attributes predictable from plant and soil properties could forecast the magnitude and spatial distribution of N2O emission hot moments under changing climate. Integrating these hot moments, particularly the dynamics of WFPS, into process-based models could refine N2O emission modeling and enhance the accuracy of global N2O budget prediction.

期刊论文 2025-05-01 DOI: 10.1111/gcb.70254 ISSN: 1354-1013

Accurately understanding flood evolution and its attribution is crucial for watershed water resource management as well as disaster prevention and mitigation. The source region of the Yellow River (SRYR) has experienced several severe floods over the past few decades, but the driving factor influencing flood volume variation in the SRYR remains unclear. In this study, the Budyko framework was used to quantify the effects of climate change, vegetation growth, and permafrost degradation on flood volume variation in six basins of the SRYR. The results showed that the flood volume decreased before 2000 and increased after 2000, but the average value after 2000 remained lower than that before 2000. Flood volume is most sensitive to changes in precipitation, followed by changes in landscape in all basins. The decrease in flood volume was primarily influenced by changes in active layer thickness in permafrost-dominated basins, while it was mainly controlled by other landscape changes in non-permafrost-dominated basins. Meanwhile, the contributions of changes in potential evapotranspiration and water storage changes to the reduced flood volume were negative in all basins. Furthermore, the impact of vegetation growth on flood volume variation cannot be neglected due to its regulating role in the hydrological cycle. These findings can provide new insights into the evolution mechanism of floods in cryospheric basins and contribute to the development of strategies for flood control, disaster mitigation, and water resource management under a changing climate.

期刊论文 2025-04-09 DOI: 10.3390/rs17081342

The Qinghai-Tibetan Plateau (QTP) has undergone significant warming, wetting, and greening (WWG) over decades, alongside substantial alterations in hydrological regimes. These changes present great challenges for safeguarding water resources and ecosystems downstream. However, the lack of field observation and systematic research has obscured our understanding of how hydrological processes respond to the combined influences of climate-permafrost-vegetation. This study focuses on the source regions of the Yangtze River, one of the highest permafrost-covered basins on the QTP, and employs a process-based hydrological model to quantify the effects of WWG on hydrological processes. We show that the increasing precipitation dominates subsurface runoff changes while rising temperature primarily affects surface runoff changes by reducing the frozen duration (-52 days/century) and thickening the active layer (+2.4 cm/year). Greening vegetation primarily affects transpiration and interception evaporation. Warming, wetting, and greening will cause a transition in runoff dynamics from surface runoff dominance to subsurface runoff dominance in permafrost basins, and reduce the risk of both flooding and water shortage indicated by the decreased maximum low flow duration and maximum high flow duration of 11.0 and 5.0 days/year, respectively. Moreover, cold permafrost regions exhibit a greater propensity for generating runoff, as indicated by a higher annual increase in runoff coefficient (0.005/year) and total runoff (4.81 mm/year), compared to warm permafrost regions (with increase of 0.001/year and 1.20 mm/year, respectively). These findings enhance the understanding of hydrological changes due to WWG and provide insights for water resources management in permafrost regions under climate change.

期刊论文 2025-04-01 DOI: 10.1029/2024WR038465 ISSN: 0043-1397
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共744条,75页