Silicon monoxide (SiO) is highly attractive as an anode material for high-energy lithium-ion batteries (LIBs) due to its significantly higher specific capacity. However, its practical application is hindered by substantial volume expansion during cycling, which leads to material pulverization and an unstable solid electrolyte interphase (SEI) layer. Inspired by the natural root fixation in soil, we designed a root-like topological structure binder, cassava starch-citric acid (CS-CA), based on the synergistic action of covalent and hydrogen bonds. The abundant -OH and -COOH groups in CS-CA molecules effectively form hydrogen bonds with the -OH groups on the SiO surface, significantly enhancing the interfacial interaction between CS-CA and SiO. The root-like topological structure of CS-CA with a high tolerance alleviates the mechanical stress generated by the volume changes of SiO. More encouragingly, the hydrogen bond action among CS-CA molecules produces a self-healing effect, which is advantageous for repairing damaged electrodes and preserving their structural integrity. As such, the CS-CA/SiO electrode exhibits exceptional cycling performance (963.1 mA h g-1 after 400 cycles at 2 A g-1 ) and rate capability (558.9 mA h g-1 at 5 A g-1 ). This innovative, topologically interconnected, root-inspired binder will greatly advance the practical application of long-lasting micron-sized SiO anodes. (c) 2025 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
AimsPlant yield, nitrate accumulation risk, and the potential pathogenic microorganism are critical parameters in evaluating soil fertility management. The nitrate content in the soil-plant system is substantially driven by soil abiotic properties and soil and endophytic microorganisms which are also potential resources of plant pathogenicity. This study aimed to quantify the effects of citric acid (CA), alone or with dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP), on plant yield, nitrate accumulation risk and potential pathogenicity of soil-plant system.MethodsOur study contained six treatments: (1) control without CA or nitrification inhibitor (CK); (2) sole DCD application treatment (DCT); (3) sole DMPP application treatment (DMT); (4) sole CA application treatment (CAT); (5) CA + DCD application treatment (CADCT) and (6) CA + DMPP application treatment (CADMT). The nitrate contents, plant yields, and bacterial communities in soil and plant samples were analyzed.ResultsThe CA significantly reduced soil nitrate contents by 29.8%. Relative to sole CA application, extra nitrification inhibitor application significantly enhanced plant yields and decreased plant nitrate contents. The exclusive CA application could significantly stimulate the soil Actinobacteriota but reduce the soil pathogenicity, but extra nitrification inhibitors led to higher potential soil pathogenicity.ConclusionsThe single CA application could decrease nitrate accumulation risk and mitigating potential soil pathogenicity damage, while extra nitrification inhibitor application would intensify the performances of CA in decreasing plant nitrate accumulation but potentially enhancing the pathogenic. It deserves to emphasize the consideration of the tradeoffs among plant yield, nitrate accumulation risk, and potential pathogen risk when evaluating the effects of CA and nitrification inhibitors.
A novel thermoset biopolymer was developed from citric acid and glycerol (referred to as Polyglycerol citrate (PGC)) through polycondensation. PGC is a completely biodegradable and water-soluble polymer, but it has poor thermal stability, fire retardant and mechanical properties. To enhance the usability of this material in food packaging, insulations, and other domestic products, its strength was enhanced by reinforcement through jute fiber (JF) which is also biodegradable and environmentally friendly. The thermal stability and fire-retardant properties of the jute/PGC composite were improved by incorporating aluminum trihydride (ATH) particles in it. The concentration of ATH was varied between 0% and 12% to evaluate the optimum composition for improved thermal, mechanical and flammability properties. The strength and modulus of the material were evaluated using a tensile test while the fire retardant and thermal properties were determined using burning tests, cone calorimetry and thermogravimetric analysis. The surface morphology was studied through a scanning electron microscope. The maximum tensile strength was obtained by incorporating 9% ATH in the jute/PGC composite, which is 236% higher than the strength of neat PGC resin. Similarly, the heat release rate of jute/PGC composite was reduced by 17% with the incorporation of ATH particles. Also, the burning rate of jute/PGC was reduced by 72%. Thermal stability was also observed to improve. Possible chemical interaction between the constituents of the composite was confirmed through Fourier transform infrared spectroscopy (FTIR). The biodegradation of the composite specimens was validated through a soil burial test.
In the past few decades, Cadmium-contaminated soil in agricultural fields has been a major global issue. The wide attention followed in agricultural production and the remediation of cadmium pollution in soil by cotton plants, due to the characteristics of wide planting area, the large biomass, strong capacity of cadmium accumulation, and non-edible properties of fiber. But the root secretion mechanism of cotton plants in response to cadmium threat is still unclear. In this study, four CdCl2 concentrations (0, 150, 300,450 mu mol/L) were applied to the soil at seedling stage, and physiological indicators of cotton seedling were detected and root exudates were collected after 10 days of cadmium exposure. The results showed that the cadmium tolerance of cotton seedlings was activated to the greatest extent under 300 mu mol/L cadmium, and inhibited when the concentration reached 400 mu mol/L. A total of 407 metabolites were detected based on UPLC-MS/MS. The composition and content of root exudates of cotton seedlings were significantly changed by cadmium stress, and there were 7 common differential accumulated metabolites, including isomaltulose, quinic acid, citric acid, gamma-aminobutyric acid, isomaltulose, galactinol and gluconic acid. KEGG analysis showed that there were 7 metabolic pathways highly related to cadmium stress, including pyruvate metabolism, glyoxylate and dicarboxylate metabolism, citrate cycle, galactose metabolism, starch and sucrose metabolism, ABC transporters and carbon metabolism. These metabolic pathways were involved in osmoregulation, energy supply and resilience in plants. In addition, exogenous addition of citric acid can enhance the antioxidant capacity of cotton leaves, and promote the absorption and accumulation of cadmium in cotton. This study provides a theoretical basis for further research on elucidating the response mechanism of root exudates in cotton plants to cadmium stress and for utilizing root exudates such as citric acid to alleviate cadmium stress.
Camellia oleifera shells (COS) are commonly discarded as an agricultural by-product. Effective utilization of COS can not only reduce environmental pollution but also enhance the value of the tea-oil industry. The unique composition of COS, with high hemicellulose and low cellulose content, makes it suitable for the production of film materials. In this study, COS holocellulose (COSH) was isolated and treated with four different types of dilute acids (15 % acetic acid, gallic acid, citric acid, and 0.5 % sulfuric acid, 1-24 h, 75 degrees-105 degrees-105 degrees C) to produce barrier films. Among these, citric acid treatment resulted in the strongest and toughest film. By incorporating a brief ultrasonic pretreatment (15 min, 300 w) prior to the citric acid reaction, translucent films were achieved with impressive mechanical properties, showing tensile strength, Young's modulus and elongation at break up to 75.72 MPa, 3306.11 MPa and 8.01 %, respectively. Through a comprehensive analysis of the structure-property relationships, it was discovered that the combined effects of ultrasonic and citric acid treatments disrupted the integrated holocelluose fiber structure and facilitated the formation of a robust hydrogen bond network during the film preparation process. The resulting films exhibited enhanced water vapor barrier properties, antioxidant capacity, and complete decomposition in soil, suggesting the potential application as wraps for fresh fruits.
In this study, hydroxypropyl cellulose (HPC) was utilized as the raw material, with the addition of beta-cyclodextrin (beta-CD), citric acid (CA) as the crosslinking agent, and sodium hypophosphite (SHP) as the catalyst to produce hydroxypropyl cellulose/beta-CD composite films. The inclusion of beta-CD resulted in an increase in the tensile strength of the film, with the maximum value of 13.5 MPa for the 1 % beta-CD composite membrane. Additionally, after degradation in soil for 28 days, the degradation ability was significantly enhanced, with the 1.0 % beta-CD composite film exhibiting the highest degradation rate of 27.21 %. Furthermore, the water permeability of the composite membrane was improved with the addition of beta-CD. Specifically, when the beta-CD content was 1.0 %, the water vapor transmission reached its lowest point at 2,445 g* ( m 2 * 24 d ) - 1 ${({m}{2}\ast 24d)}{-1}$ . The findings demonstrated that the 1 % beta-cyclodextrin/hydroxypropyl cellulose composite film effectively preserved the freshness of strawberries, reducing the weight loss rate by 1.65 % compared to the control group. In conclusion, this research highlights the potential for preparing composite membranes using HPC and beta-CD crosslinking, thereby expanding the application of hydroxypropyl cellulose and beta-CD in food preservation.
Highly acidic citrus pomace (CP) is a byproduct of Pericarpium Citri Reticulatae production and causes significant environmental damage. In this study, a newly isolated acid-tolerant strain of Serratia sp. JS-043 was used to treat CP and evaluate the effect of reduced acid citrus pomace (RACP) in passivating heavy metals. The results showed that biological treatment could remove 97.56% of citric acid in CP, the organic matter in the soil increased by 202.60% and the catalase activity in the soil increased from 0 to 0.117 U g(-1). Adding RACP into soil can increase the stabilization of Cu, Zn, As, Co, and Pb. Specifically, through the metabolism of strain JS-043, RACP was also involved in the stabilization of Zn and Pb, and Residual Fraction in the total pool of these metals increased by 10.73% and 10.54%, respectively. Finally, the genome sequence of Serratia sp. JS-043 was completed, and the genetic basis of its acid-resistant and acid-reducing characteristics was preliminarily revealed. JS-043 also contains many genes encoding proteins associated with heavy metal ion tolerance and transport. These findings suggest that JS-043 may be a high-potential strain to improve the quality of acidic organic wastes that can then be useful for soil bioremediation.
This study aimed to evaluate the effect of modified nanoscale zero-valent iron (SAS-nZVI) on chemical leaching of lead and cadmium composite contaminated soil by citric acid (CA). The synthesized SAS-nZVI was used as a leaching aid to improve the removal rate of soil heavy metals (HMs) by CA chemical leaching. The effects of various factors such as SAS-nZVI dosage, elution temperature and elution time were studied. At the same time, the effect of chemical leaching on the basic physical and chemical properties of soil and the morphology of HMs was evaluated. The results show that when the SAS-nZVI dosage is 2.0 g/L, the leaching temperature is 25 degrees C, and the leaching time is 720 min, the maximum removal rates of Pb and Cd in the soil are 77.64% and 97.15% respectively. The experimental results were evaluated using elution and desorption kinetic models (Elovich model, double constant model, diffusion model). The elution and desorption process of Pb and Cd in soil by SAS-nZVI-CA fitted well with the double-constant model, indicating that the desorption kinetic process of Pb and Cd is a heterogeneous diffusion process, and the elution process is controlled by diffusion factors. After leaching with SAS-nZVI-CA, the physical and chemical properties of the soil changed little, the mobility and toxicity of HMs in the soil were reduced, and the HMs content in the leaching waste liquid was reduced. It can be concluded that SAS-nZVI enhances the efficiency of CA in extracting Pb and Cd from soil, minimizes soil damage resulting from chemical leaching technology, and alleviates the challenges associated with treating leaching waste liquid.
The improper disposal of plastics is a growing concern due to increasing global environmental problems such as the rise of CO2 emissions, diminishing petroleum sources, and pollution, which necessitates the research and development of biodegradable materials as an alternative to conventional packaging materials. The purpose of this research was to analyse the properties of biodegradable polymer blends of thermoplastic potato starch (TPS) and polylactide, (PLA) without and with the addition of citric acid (CA) as a potential compatibilizer and plasticizer. The prepared blends were subjected to a comprehensive physicochemical characterization, which included: FTIR-ATR spectroscopy, morphological analysis by scanning electron microscopy (SEM), determination of thermal and mechanical properties by differential scanning calorimetry (DSC), water vapour permeability (WVP), as well as biodegradation testing in soil. The obtained results indicate an improvement in adhesion between the TPS and PLA phases due to the addition of citric acid, better homogeneity of the structure, and greater compatibility of the polymer blends, leading to better thermal, mechanical and barrier properties of the studied biodegradable TPS/PLA polymer blends. After conducting the comprehensive research outlined in this paper, it has been determined that the addition of 5 wt.% of citric acid serves as an effective compatibilizer and plasticizer. This supplementation achieves an optimal equilibrium across thermal, mechanical, morphological, and barrier properties, while also promoting material sustainability through biodegradation. In conclusion, it can be stated that the use of thermoplastic starch in TPS/PLA blends accelerates the biodegradation of PLA as a slowly biodegradable polymer. While the addition of citric acid offers significant advantages for TPS/PLA blends, further research is needed to optimize the formulation and processing parameters to achieve the desired balance between mechanical strength, thermal and barrier properties and biodegradability.
Aluminum (Al) toxicity in acidic soils is a major abiotic stress that negatively impacts plant growth and development. The toxic effects of Al manifest primarily in the root system, leading to inhibited root elongation and functionality, which impairs the above-ground organs of the plant. Recent research has greatly improved our understanding of the applications of small molecule compounds in alleviating Al toxicity. This study aimed to investigate the role of boron (B), silicon (Si), and their combination in alleviating Al toxicity in soybeans. The results revealed that the combined application significantly improved the biomass and length of soybean roots exposed to Al toxicity compared to B and Si treatments alone. Our results also indicated that Al toxicity causes programmed cell death (PCD) in soybean roots, while B, Si, and their combination all alleviated the PCD induced by Al toxicity. The oxidative damage induced by Al toxicity was noticeably alleviated, as evidenced by lower MAD and H2O2 accumulation in the soybean roots treated with the B and Si combination. Moreover, B, Si, and combined B and Si significantly enhanced plant antioxidant systems by up-regulating antioxidant enzymes including CAT, POD, APX, and SOD. Overall, supplementation with B, Si, and their combination was found to alleviate oxidative damage and reduce PCD caused by Al toxicity, which may be one of the mechanisms by which they alleviate root growth inhibition due to Al toxicity. Our results suggest that supplementation with B, Si, and their combination may be an effective strategy to improve soybean growth and productivity against Al toxicity.