Atmospheric brown carbon (BrC) from wildfires is a key component of light-absorbing carbon that significantly contributes to global radiative forcing, but its atmospheric evolution and lifetime remain poorly understood. In this study, we investigate BrC evolution by synthesizing data from one laboratory campaign and four aircraft campaigns spanning diverse spatial scales across North America. To estimate initial conditions for evaluating plume evolution, we develop a method to parametrize the emission ratios of BrC and other species using commonly measured inert tracers, acetonitrile and hydrogen cyanide. The evolution of BrC absorption in the free troposphere is characterized as a function of hydroxyl radical (OH) exposure, yielding an effective photochemical rate constant of 9.7-1.6 +4.8 x 10-12 cm3 molecule-1 s-1. The relatively slow reaction rate results in small BrC decay within the first few hours after emission, making it difficult to distinguish from source variability. This helps explain the absence of clear evolutionary trends in near-field studies. Assuming an OH concentration of 1.26 x 106 molecules cm-3, this rate constant corresponds to an e-folding lifetime of approximately 23 h. After extensive photooxidation (OH exposure similar to 1012 molecules cm-3 s), 4 +/- 2% of the emitted BrC persists, representing a recalcitrant fraction with potential long-term climate impacts. These results improve our understanding of BrC variability and photochemical processing and provide critical constraints for modeling its impacts on climate.
Permafrost thaw represents one of Earth's largest climate feedback risks, potentially releasing vast carbon (C) stores as greenhouse gases (GHG). However, our ability to predict emissions remains limited by poor understanding of how changing organic matter (OM) composition affects microbial carbon processing. We test a metabolism-centered redox framework, which views microbial processes as coupled oxidative-reductive reactions, to mechanistically explain how organic matter metabolite quality controls greenhouse gas production in permafrost-affected peatland ecosystems. Rather than relying solely on geochemical redox measurements, our approach examines how microbes balance electron flow through metabolic pathways. Using active layer peat (9-19 cm) from contrasting environments (bog and fen), we employed multi-omics approaches, including metabolomics, metagenomics, and metatranscriptomics, to link OM chemistry to microbial function. Our results reveal distinct dissolved organic matter metabolite composition, with fen systems enriched in compounds with higher substrate quality (low molecular weight (MW) sugars with high H:C ratios and low aromaticity) and bog systems dominated by compounds with lower substrate quality (high MW phenols with lower H:C ratios and higher aromaticity). In fen samples, these sugar-like compounds correlated with higher oxidative metabolism and methanogenesis, supported by increased glycolysis gene expression. Initially, electrons from increased oxidative metabolism were balanced through nitrate and sulfate reduction, but as these electron acceptors were depleted, methanogenesis increased to maintain redox balance. Fen samples showed rapid degradation of both high- and low-substrate-quality compounds, suggesting sufficient energy for efficient C cycling. Conversely, bog samples exhibited more polyphenolic compounds, lower glycolysis activity, and higher stress-related gene expression, suggesting energy was diverted towards cell maintenance under acidic conditions rather than C processing. This approach suggests that predicting greenhouse gas emissions requires an understanding of how organic matter quality shapes microbial energy allocation strategies, providing a mechanistic framework for improving emission predictions from permafrost-affected peatlands and similar ecosystems.
Currently, traditional vertical barrier materials are associated with large carbon footprints and high costs (in some regions) due to the widespread use of Portland cement and sodium-based bentonite materials. In recent years, a new technology of Carbonized Reactive Magnesia Cement (CRMC) has gradually been developed to sequester CO2 using Eco-cement. The application prospects of CRMC in vertical barrier materials are explored in this study. The changes in flowability of Reactive Magnesia Cement (RMC) slurry and the unconfined compressive strengthen (UCS) and permeability characteristics of CRMC treated soils are investigated. The results show that the fluidity of RMC slurry decreases further with the increase of MgO substitute cement content. For RMC slurry meeting the fluidity requirements, UCS increased rapidly in the early period (3 h) after carbonization, reaching 348.33 kPa, and the hydraulic conductivity k decreased (k < 1 x10(- 7) cm/s) in the later period (14d), and the final hydraulic conductivity reached 6.13 x 10(- 8) cm/s (28d). The pores of the material are filled with a large number of hydration products and carbonates, which alters the pore size distribution structure of the material. This is the reason for the mechanical properties and permeability performance of CRMC treated soils. The overall results of this study well demonstrate that CRMC treated soils, as a new, environmentally friendly, and cost-effective material, have great potential in the construction of vertical barriers.
Study area: Urumqi Glacier No.1 Catchment in central Asia. Study focus: Chemical weathering at the basin scale is important process for understanding the feedback mechanism of the carbon cycle and climate change. This study mainly used the actual sampling data in 2013, 2014, and 2016, and the first collection from the literature in same catchment to analyze the seasonal and interannual characteristics of meltwater runoff, as well as cation denudation rate (CDR). New hydrological insights for the study region: The dominant ions of meltwater runoff are Ca2 +, HCO3- , and SO42-, which are mainly derived from calcite dissolution, feldspar weathering and sulfide oxidation. Meltwater runoff at Urumqi Glacier No.1 has higher concentrations of Ca2+ and lower concentrations of HCO3- than that from glaciers in Asia. Compared to 2006 and 2007, cation concentrations increased in 2013 and 2014, while SO42- concentration decreased. The daily ion concentration has seasonality and exhibits a negative relationship with discharge. Daily CDR is positively related to discharge and temperature. Annual CDR values range from 12.34 to 19.04 t/ km2/yr in 2013, 2014, and 2016, which are 1-1.7 times higher than those in 2006 and 2007 and higher than some glaciers in Asia. These results indicate that chemical weathering rate in the Urumqi Glacier No.1 catchment has increased with climate warming, and it is stronger than that of some glaciers in the Tibetan Plateau and surroundings.
This study investigates black carbon (BC) concentrations in the seasonal snowpack on the Godwin-Austen Glacier and in surface snow at K2 Camps 1 and 2 (Karakoram Range), assessing their impact on snowmelt during the 2019 ablation season. Potential BC and moisture sources were identified through back-trajectory analysis and atmospheric reanalyses. Variations in water stable isotopes (delta 1(8)O and delta 2H) in the snowpack were analysed to confirm its representativeness as a climatic record for the 2018-19 accumulation season. The average BC concentration in the snow pits (12 ng g-1) generated 66 mm w.e. (or 53 mm w.e. excluding the basal zone) of meltwater. Surface snow at K2 Camp 1 showed BC concentrations of 7 ng g-1, consistent with those on the snowpack surface, suggesting it may reflect local BC levels in late February 2019. In contrast, higher concentrations at K2 Camp 2 (26 ng g-1) were potentially linked to expedition activities.
This review explores both the positive and negative impacts of chemistry on society, focusing on the inter between pharmaceutical, natural, and synthetic chemicals. On the one hand, drugs developed through medicinal chemistry have saved lives, improved people's quality of life, and increased longevity. However, they also pose risks, including fatalities and environmental damage. Pharmaceutical chemistry has revolutionized medical practice by enabling the treatment and cure of fatal or debilitating diseases, significantly contributing to the rise in global life expectancy through the research and development of new bioactive substances. This article also highlights the harmful effects of toxic synthetic substances, which negatively impact human health and the environment, affecting plants, animals, air, water, soil, and food.
Drought may impact plant-soil biotic interactions in ways that modify aboveground herbivore performance, but the outcomes of such biotic interactions under future climate are not yet clear. We performed a growth chamber experiment to assess how long-term, drought-driven changes in belowground communities influence plant growth and herbivore performance using a plant-soil feedback experimental framework. We focussed on two common pasture legumes-lucerne, Medicago sativa L., and white clover, Trifolium repens L. (both Fabaceae)-and foliar herbivores-cotton bollworm, Helicoverpa armigera (H & uuml;bner) (Lepidoptera: Noctuidae), and two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Soil was collected from a field facility where rainfall had been manipulated for 6 years, focussing on treatments representing ambient rainfall and prolonged drought (50% reduction relative to ambient), to consider the effects of biological legacies mediated by the prolonged drought. All soils were sterilized and re-inoculated to establish the respective home (i.e. where a given plant is cultivated in its own soil) and away (i.e. where a given plant is cultivated in another species' soil) treatments in addition to a sterile control. We found that the relative growth rate (RGR) and relative consumption of larvae were significantly lower on lucerne grown in soil with ambient rainfall legacies conditioned by white clover. Conversely, the RGR of insect larvae was lower on white clover grown in soil with prolonged drought legacies conditioned by lucerne. Two-spotted spider mite populations and area damage (mm2) were significantly reduced on white clover grown in lucerne-conditioned soil in drought legacies. The higher number of nodules found on white clover in lucerne-conditioned soil suggests that root-rhizobia associations may have reduced foliar herbivore performance. Our study provides evidence that foliar herbivores are affected by plant-soil biotic interactions and that prolonged drought may influence aboveground-belowground linkages with potential broader ecosystem impacts.
Mining can greatly affect water quality in nearby areas, especially when mines are abandoned and lead to contamination from tailings and drainage. This study examines the impact of the abandoned Ze & iuml;da lead mine on water sources in the Upper Moulouya region of northwestern Morocco. We aimed to evaluate water quality, understand geochemical processes, and determine the suitability of water for drinking and irrigation. In summer 2021, 21 water samples were collected from rivers, dams, groundwater, and quarry lakes. We analyzed 18 physicochemical and metallic parameters, finding significant variations in ion concentrations. The main ions were ranked as Na+ > Mg2+ > Ca2+ > K+ and HCO3- > Cl- > SO42- > NO3-. Metal concentrations followed the order Zn > Cu > Pb > As > Cd. The Drinking Water Quality Index (DWQI) showed that 95% of the samples were not suitable for drinking. Similarly, the Irrigation Water Quality Indexes (IWQIs) indicated that quarry lakes were unsuitable for irrigation, while groundwater met acceptable criteria. Over 70% of the samples showed no significant metal contamination based on the Heavy Metal Evaluation Index (HEI) and Heavy Metal Pollution Index (HPI). The data suggest that water-rock interactions are the main drivers of hydrochemical changes, with processes like calcite, dolomite, otavite, and cerussite precipitation, as well as the weathering of minerals like halite, starkeyite, and sylvite. To protect water quality and prevent environmental damage, ongoing monitoring and appropriate measures are recommended for the Ze & iuml;da mining area.
Context. The solar wind protons implanted in silicate material and combined with oxygen are considered crucial for forming OH/H2O on the Moon and other airless bodies. This process may also have contributed to hydrogen delivery to planetary interiors through the accretion of micrometre-sized dust and planetesimals during early stages of the Solar System. Aims. This paper experimentally investigates the depth distribution of solar wind protons in silicate materials and explores the mechanisms that influence this profile. Methods. We simulated solar wind irradiation by implanting 3 keV D-2(+) ions in three typical silicates (olivine, pyroxene, and plagio-clase) at a fluence of similar to 1.4 x 10(17) ions/cm(2). Fourier transform infrared spectroscopy was used to analyse chemical bond changes, while transmission electron microscopy (TEM) characterised microstructural modifications. Nanoscale secondary ion mass spectrometry (NanoSIMS) was employed to measure the D/O-16 ratio and determine the depth distribution of implanted deuterium. Results. The newly produced OD band (at 2400-2800 cm(-1)) in the infrared spectrum reveals the formation of O-D bonds in the irradiated silicates. The TEM and NanoSIMS results suggest that over 73% of the implanted D accumulated in fully amorphous rims with a depth of 70 nm, while 25% extended inwards to similar to 190 nanometres, resulting in partial amorphisation. The distribution of these deuterium particles is governed by the collision processes of the implanted particles, which involve factors such as initial energy loss, cascade collisions, and channelling effects. Furthermore, up to 2% of the total implanted D penetrated the intact lattice via diffusion, reaching depths ranging from hundreds of nanometres to several micrometres. Conclusions. Our results suggest that implanted solar wind protons can be retained in silicate interiors, which may significantly affect the hydrogen isotopic composition in extraterrestrial samples and imply an important source of hydrogen during the formation of terrestrial planets.
The Tibetan Plateau is the Asia Water Tower and is pivotal for Asia and the whole world. Groundwater is essential for sustainable development in its alpine regions, yet its chemical quality increasingly limits its usability. The present research examines the hydrochemical characteristics and origins of phreatic groundwater in alpine irrigation areas. The study probes the chemical signatures, quality, and regulatory mechanisms of phreatic groundwater in a representative alpine irrigation area of the Tibetan Plateau. The findings indicate that the phreatic groundwater maintains a slightly alkaline and fresh status, with pH values ranging from 7.07 to 8.06 and Total Dissolved Solids (TDS) between 300.25 and 638.38 mg/L. The hydrochemical composition of phreatic groundwater is mainly HCO3-Ca type, with a minority of HCO3-NaCa types, closely mirroring the profile of river water. Nitrogen contaminants, including NO3-, NO2-, and NH4+, exhibit considerable concentration fluctuations within the phreatic aquifer. Approximately 9.09% of the sampled groundwaters exceed the NO2- threshold of 0.02 mg/L, and 28.57% surpass the NH4+ limit of 0.2 mg/L for potable water standards. All sampled groundwaters are below the permissible limit of NO3- (50 mg/L). Phreatic groundwater exhibits relatively good potability, as assessed by the entropy-weighted water quality index (EWQI), with 95.24% of groundwaters having an EWQI value below 100. However, the potential health risks associated with elevated NO3- levels, rather than NO2- and NH4+, merit attention when such water is consumed by minors at certain sporadic sampling locations. Phreatic groundwater does not present sodium hazards or soil permeability damage, yet salinity hazards require attention. The hydrochemical makeup of phreatic groundwater is primarily dictated by rock-water interactions, such as silicate weathering and cation exchange reactions, with occasional influences from the dissolution of evaporites and carbonates, as well as reverse cation-exchange processes. While agricultural activities have not caused a notable rise in salinity, they are the main contributors to nitrogen pollution in the study area's phreatic groundwater. Agricultural-derived nitrogen pollutants require vigilant monitoring to avert extensive deterioration of groundwater quality and to ensure the sustainable management of groundwater resources in alpine areas.