共检索到 1120

The thermal coupling between the atmosphere and the subsurface on the Qinghai-Tibetan Plateau (QTP) governs permafrost stability, surface energy balance, and ecosystem processes, yet its spatiotemporal dynamics under accelerated warming are poorly understood. This study quantifies soil-atmosphere thermal coupling ((3) at the critical 0.1 m root-zone depth using in-situ data from 99 sites (1980-2020) and a machine learning framework. Results show significantly weaker coupling in permafrost (PF) zones (mean (3 = 0.42) than in seasonal frost (SF) zones (mean (3 = 0.50), confirming the powerful thermal buffering of permafrost. Critically, we find a widespread trend of weakening coupling (decreasing (3) at 66.7 % of sites, a phenomenon most pronounced in SF zones. Our driver analysis reveals that the spatial patterns of (3 are primarily controlled by surface insulation from summer rainfall and soil moisture. The temporal trends, however, are driven by a complex and counter-intuitive interplay. Paradoxically, rapid atmospheric warming is the strongest driver of a strengthening of coupling, likely due to the loss of insulative snow cover, while trends toward wetter conditions drive a weakening of coupling by enhancing surface insulation. Spatially explicit maps derived from our models pinpoint hotspots of accelerated decoupling in the eastern and southern QTP, while also identifying high-elevation PF regions where coupling is strengthening, signaling a loss of protective insulation and increased vulnerability to degradation. These findings highlight a dynamic and non-uniform response of land-atmosphere interactions to climate change, with profound implications for the QTP's cryosphere, hydrology, and ecosystems.

期刊论文 2026-01-15 DOI: 10.1016/j.agrformet.2025.110925 ISSN: 0168-1923

This study presents the first high-resolution Regional Climate Model 5 (RegCM5) analysis of the unprecedented May-June 2024 heatwave in India, evaluating the role of absorbing aerosols-black carbon (BC) and dust-in amplifying extreme heat. Heatwaves have a severe impact on health, mortality, and agriculture, with absorbing aerosols exacerbating warming. MERRA-2 Aerosol Optical Depth (AOD) anomalies show that BC peaked at +0.027 in May, weakening in June, while dust remained higher (up to +0.36), intensifying over the Indo-Gangetic Plain (IGP) and northwestern India. RegCM5 simulations, validated against India Meteorological Department (IMD) observational data, indicate that these aerosols amplified surface temperature anomalies, with BC-induced warming exceeding +4 degrees C in northern India during May, while dust produced stronger anomalies, surpassing +5 degrees C in the IGP and Rajasthan in June. BC-induced warming was vertically distributed and more pronounced under clear skies, whereas dust-induced warming was surface-concentrated and persisted longer in regions with higher dust concentrations. Both aerosols increased net shortwave radiation (SWR; >300 W m(-2) for BC, similar to 270 W m(-2) for dust) and upward longwave radiation (ULR; >130 W m(-2)), inducing surface energy imbalances. This radiative forcing caused lower-tropospheric warming (up to +3 degrees C at 925 hPa for BC and 850 hPa for dust) and humidity deficits (-0.009 kg/kg), which stabilised the atmosphere, suppressed convection, and delayed monsoon onset. These findings highlight aerosol-radiation interactions as critical drivers of heatwave onset and persistence, emphasizing the need for their integration into regional climate models and early warning systems.

期刊论文 2026-01-15 DOI: 10.1016/j.atmosenv.2025.121673 ISSN: 1352-2310

Infrastructure in northern regions is increasingly threatened by climate change, mainly due to permafrost thaw. Prediction of permafrost stability is essential for assessing the long-term stability of such infrastructure. A key aspect of geotechnical problems subject to climate change is addressing the surface energy balance (SEB). In this study, we evaluated three methodologies for applying surface boundary conditions in longterm thermal geotechnical analyses, including SEB heat flux, n-factors, and machine learning (ML) models by using ERA5-Land climate reanalysis data until 2100. We aimed to determine the most effective approach for accurately predicting ground surface temperatures for climate-resilient design of northern infrastructure. The evaluation results indicated that the ML-based approach outperformed both the SEB heat flux and n-factors methods, demonstrating significantly lower prediction errors. The feasibility of long-term thermal analysis of geotechnical problems using ML-predicted ground surface temperatures was then demonstrated through a permafrost case study in the community of Salluit in northern Canada, for which the thickness of the active layer and talik were calculated under moderate and extreme climate scenarios by the end of the 21st century. Finally, we discussed the application and limitations of surface boundary condition methodologies, such as the limited applicability of the n-factors in long-term analysis and the sensitivity of the SEB heat flux to inputs and thermal imbalance. The findings highlight the importance of selecting suitable boundary condition methodologies in enhancing the reliability of thermal geotechnical analyses in cold regions.

期刊论文 2026-01-15 DOI: 10.1016/j.coldregions.2025.104735 ISSN: 0165-232X

Widespread dieback of natural Mongolian pine (Pinus sylvestris var. mongolica) forests in Hulunbuir sandy land since 2018 has raised concerns about their sustainability in afforestation programs. We hypothesized that this dieback is driven by two interrelated mechanisms: (1) anthropogenic fire suppression disrupting natural fire regime, and (2) climate change-induced winter warming reducing snow cover duration and depth. To test these, we quantified dieback using Green Normalized Difference Vegetation Index (GNDVI) across stands with varying fire histories via UAV-based multispectral imagery, alongside long-term climatic observations (1960-2024) of temperature, precipitation, and snow dynamics from meteorological stations combined with remote sensing datasets. Results showed that an abrupt change point in 2018 for both annual precipitation and mean temperature was identified, coinciding with dieback. Significant negative linear relationship between GNDVI (forest health) and last fire interval indicated prolonged fire exclusion exacerbating dieback, possibly via pathogen/pest accumulation. Winter temperature rose significantly during 1960-2023, with notable acceleration following abrupt change point in 1987. Concurrently, winters during 2018-2023 exhibited pronounced warming, with snow cover duration reduced by 23 days and snow depth diminished by 7.6 cm. These conditions reduced snowmelt -derived soil moisture (critical water source) recharge in early spring, exacerbating drought stress during critical growth periods and predisposing trees to pest and disease infestations. Our results support both hypotheses, demonstrating that dieback is synergistically driven by fire regime alteration and climate-mediated snowpack reductions. Converting pure pine forests into mixed pine-broadleaf forests via differentiated water sources was proposed to restore ecological resilience in sandy ecosystems.

期刊论文 2026-01-01 DOI: 10.1016/j.foreco.2025.123271 ISSN: 0378-1127

The Three-Rivers Headwater Region (TRHR) is located on the Tibetan Plateau, within a transitional zone between seasonally frozen ground and continuous permafrost. Over 70 % of the region is predominantly covered by alpine grasslands, a vulnerable ecosystem increasingly threatened by ongoing permafrost degradation. This study utilized satellite data to analyze permafrost degradation by measuring active layer thickness (ALT) and the soil non-frozen period (NFP), and to investigate their impacts on alpine grassland growth. Results showed significant permafrost degradation from 2000 to 2020, with ALT thickening at a rate of 7.79 cm/decade (p < 0.05) and NFP lengthening by 1.1 days/yr (p < 0.05). Simultaneously, grassland vegetation exhibited a significant greening trend (0.0014 yr(-1), p < 0.01). Using the partial least squares (PLS) regression method, the study evaluated the relationships between grassland dynamics and permafrost degradation, while jointly accounting for climate variables (temperature, precipitation, and sunshine duration). ALT thickening was the dominant explanatory variable for grassland growth in 11.09 % of the region, and it was positively correlated in relatively cold western and alpine areas, but negatively correlated in the relatively warm eastern and central regions. NFP extension was the dominant explanatory variable for grassland growth in 10.38 % of the region, although its positive correlation weakened as climate conditions transitioned from relatively cold-dry to relatively warm-wet. Although permafrost degradation was positively correlated with grassland greening in relatively cold regions, the diminishing benefit of NFP extension and the adverse effects of ALT thickening may increasingly undermine grassland stability in relatively warm regions under further climate warming.

期刊论文 2026-01-01 DOI: 10.1016/j.catena.2025.109631 ISSN: 0341-8162

The retreat of glaciers due to climate change is reshaping mountain landscapes and biodiversity. While previous research has documented vegetation succession after glacier retreat, our understanding of functional diversity dynamics is still limited. In this case study, we address the effects of glacier retreat on plant functional diversity by integrating plant traits with ecological indicator values across a 140-year chronosequence in a subalpine glacier landscape. We reveal that functional richness and functional dispersion decrease with glacier retreat, while functional evenness and functional divergence increase, suggesting a shift toward more specialized and competitive communities. Our findings highlight the critical role of ecological factors related to soil moisture, soil nutrients and light availability in shaping plant community dynamics. As years since deglaciation was a key factor in regression and machine learning models, encapsulating time-lagged, spatial and historical processes, we highlight the need of including time into phenomenological or mechanistic models predicting biodiversity change following glacier retreat. The integrative approach of this case study provides novel insights into the potential response of alpine plant communities to climate change, offering a deeper understanding of how to predict and anticipate the effects of glacier extinction on biodiversity in rapidly changing environments. (sic)(sic): (sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)140(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).

期刊论文 2025-12-01 DOI: 10.1093/jpe/rtaf110 ISSN: 1752-9921

In light of a series of recent fatal landslides in Alaska, we set out to determine 1) the history of Alaskan landslides and 2) if the number of associated fatalities has increased with time. To answer our research questions, we searched a combination of 24 digital newspapers and online media sources, including historic digitized Alaskan newspapers, seeking landslides that affected people and/or infrastructure. This resulted in an inventory of 281 landslides occurring in Alaska since 1883. Our database includes the date on which the landslide occurred, its location and probable trigger, any reported injuries and/or fatalities, other reported damage, and the media source. Our inventory indicates that the number of reported landslides started to increase in the 1980's, and has increased dramatically in recent decades. We correlate the increase in landslides to a 1.2 degrees C to 3.4 degrees C increase in average annual air temperature and a 3% to 27% increase in precipitation over the last 50 years across Alaska. This change in climate is degrading permafrost, increasing the number of annual freeze/thaw events, and contributing to larger and more intense precipitation events - such as atmospheric rivers, all of which increase landslide susceptibility in various parts of the state. Alaska's last four fatal landslides occurred in Southeast Alaska, which has experienced the greatest increase in the number of landslides per capita. Our landslide database can serve as the initial inventory for analyses of landslides related to specific extreme weather events, as well as a resource to determine costs incurred from landslide-related damage.

期刊论文 2025-11-27 DOI: 10.1007/s10346-025-02663-z ISSN: 1612-510X

The freeze-thaw erosion zone of the Tibetan Plateau (FTZTP) maintains an ecologically fragile system with enhanced thermal sensitivity under climate warming. Vegetation phenology in this cryosphere-dominated environment acts as a crucial biophysical indicator of climate variability, showing potentially amplified responses to environmental changes relative to other ecosystems. To investigate vegetation phenological characteristics and their climate responses, we derived key phenological parameters (the start, end and length of growing season-SOS, EOS, LOS) for the FTZTP from 2001 to 2021 using MODIS EVI data and analysed their spatiotemporal patterns and climatic drivers. Results indicated that the spatial distribution of phenology was highly heterogeneous, influenced by local climate, complex topography and diverse vegetation. SOS generally exhibited a delayed trend from east to west, while EOS was progressively later from the central plateau towards the southeast and southwest. Consequently, LOS shortened along both east-west and south-north gradients. Under sustained warming and wetting, the region experienced intensified freeze-thaw cycles, characterised by a delayed freeze-start, advanced thaw-end and shortened freeze-thaw duration. Both climate warming and freeze-thaw changes drove an overall significant advancement of SOS (-3.1 days/decade), delay of EOS (+2.2 days/decade) and extension of LOS (+5.3 days/decade) over the 21-year period. Notably, an abrupt phenological shift occurred around 2015. Prior to 2015, both SOS and EOS advanced, whereas afterward, SOS transitioned to a delaying trend and EOS exhibited a markedly stronger delay, leading to a pronounced extension of LOS. This regime shift was primarily attributed to changes in hydrothermal conditions controlled by climate warming and evolving freeze-thaw dynamics, with temperature being the dominant factor and precipitation exerting seasonally differential effects. Our findings elucidate the complex responses of alpine cryospheric ecosystems to climate change, revealing freeze-thaw processes as a key modulator of vegetation phenology.

期刊论文 2025-11-23 DOI: 10.1002/joc.70200 ISSN: 0899-8418

Arctic ecosystems are highly vulnerable to ongoing and projected climate change. Rapid warming and growing anthropogenic pressure are driving a profound transformation of these regions, increasingly positioning the Arctic as a persistent, globally significant source of greenhouse gases. In the Russian Arctic-a critical zone for national economic growth and transport infrastructure-intensive development is replacing natural ecosystems with anthropogenically modified ones. In this context, Nature-based Solutions (NbS) represent a vital tool for climate change adaptation and mitigation. However, many NbS successfully applied globally have limited applicability in the Arctic due to its inaccessibility, short growing season, low temperatures, and permafrost. This review demonstrates the potential for adapting existing NbS and developing new ones tailored to the Arctic's environmental and socioeconomic conditions. We analyze five key NbS pathways: forest management, sustainable grazing, rewilding, wetland conservation, and ecosystem restoration. Our findings indicate that protective and restorative measures are the most promising; these can deliver measurable benefits for both climate, biodiversity and traditional land-use. Combining NbS with biodiversity offset mechanisms appears optimal for preserving ecosystems while enhancing carbon sequestration in biomass and soil organic matter and reducing soil emissions. The study identifies critical knowledge gaps and proposes priority research areas to advance Arctic-specific NbS, emphasizing the need for multidisciplinary carbon cycle studies, integrated field and remote sensing data, and predictive modeling under various land-use scenarios.

期刊论文 2025-11-20 DOI: 10.3390/su172210409

Climate change occurs more rapidly at high latitudes, making polar ecosystems highly vulnerable to environmental changes. Plants respond to these conditions by altering the fluxes of water vapor (H2O) and carbon dioxide (CO2). This study analyzed the seasonal variability of the Net Ecosystem Exchange (NEE) of CO2, as well as the sensible (H) and latent (LE) heat fluxes, in two ecosystems in north-central Siberia: a subarctic palsa mire near Igarka, and a mature larch forest near Tura. The flux responses to variations in atmospheric parameters were also assessed. Experimental data were collected from 2019 to 2023 using eddy covariance methods. The results showed that both permafrost ecosystems consistently served as net atmospheric CO2 sinks during the growing seasons, despite significant year-to-year meteorological variations. From 2019 to 2023, summer NEE ranged from -62.9 to -120.2 gC m-2 in the Igarka palsa mire and from -63.5 to -83.6 gC m-2 in the Tura larch forest. During summer periods characterized by prolonged insufficient soil moisture, higher air temperatures, and limited precipitation, the palsa mire exhibited reduced CO2 uptake (i.e., less negative NEE) and Gross Primary Production (GPP) compared to the larch forest. These results suggest that larch forests may be more resilient to climate change than palsa mires. This resilience is primarily linked to deep-rooted water access and conservative stomatal control in larch, whereas palsa mire vegetation depends strongly on surface moisture availability. H and LE fluxes exhibited significant interannual variations, primarily due to variations in incoming solar radiation and precipitation. No significant LE decrease occurred during periods of low precipitation in 2019 and 2020 when drought conditions were observed at both stations during the summer. Maximum H and LE flux rates occurred in June and July when net radiation values were at their maximum for both ecosystems. These findings underscore the urgent need for ecosystem-specific climate strategies, as differential resilience could significantly impact future carbon dynamics in the rapidly warming Arctic.

期刊论文 2025-11-15 DOI: 10.1007/s10661-025-14750-8 ISSN: 0167-6369
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共1120条,112页