Air pollution is a global health issue, and events like forest fires, agricultural burning, dust storms, and fireworks can significantly worsen it. Festivals involving fireworks and wood-log fires, such as Diwali and Holi, are key examples of events that impact local air quality. During Holi, the ritual of Holika involves burning of biomass that releases large amounts of aerosols and other pollutants. To assess the impact of Holika burning, observations were conducted from March 5th to March 18th, 2017. On March 12th, 2017, around 1.8 million kg of wood and biomass were openly burned in about 2250 units of Holika, located in and around the Varanasi city (25.23 N, 82.97 E, similar to 82.20 m amsl). As the Holika burning event began the impact on the Black Carbon (BC), particulate matter 10 & 2.5 (PM10 and PM2.5), sulphur dioxide (SO2), oxides of nitrogen (NOx), ozone (O-3) and carbon monoxide (CO) concentration were observed. Thorough optical investigations have been conducted to better comprehend the radiative effects of aerosols produced due to Holika burning on the environment. The measured AOD at 500 nm values were 0.315 +/- 0.072, 0.392, and 0.329 +/- 0.037, while the BC mass was 7.09 +/- 1.78, 9.95, and 7.18 +/- 0.27 mu g/m(3) for the pre-Holika, Holika, and post-Holika periods. Aerosol radiative forcing at the top of the atmosphere (ARF-TOA), at the surface (ARF-SUR), and in the atmosphere (ARF-ATM) are 2.46 +/- 4.15, -40.22 +/- 2.35, and 42.68 +/- 4.12 W/m(2) for pre-Holika, 6.34, -53.45, and 59.80 W/m(2) for Holika, and 5.50 +/- 0.97, -47.11 +/- 5.20, and 52.61 +/- 6.17 W/m(2) for post-Holika burning. These intense observation and analysis revealed that Holika burning adversely impacts AQI, BC concentration and effects climate in terms of ARF and heating rate.
This study investigates aerosol characteristics using ground-based measurements at two distinct regions, MohalKullu (31.9 degrees N, 77.12 degrees E; 1154 m amsl) and Kosi-Katarmal (29.64 degrees N, 79.62 degrees E; 1225 m amsl), from July 2019 to June 2022. The average Black Carbon (BC) concentrations were 1.5 f 1.0 mu g m- 3 at Mohal and 1.1 f 1.4 mu g m-3 at Katarmal. BC showed strong seasonal variability, with maxima during post-monsoon (2.6 f 1.0 mu g m- 3) and pre-monsoon (1.8 f 0.5 mu g m-3) seasons. The diurnal variation displayed distinct morning and evening peaks in all the seasons. High pre-monsoon AOD500 (0.30 f 0.06 to 0.54 f 0.08) and low values of & Aring;ngstrom exponent (0.67 f 0.10 to 0.95 f 0.30) indicated dominance of large particles, whereas lower AOD500 (0.21 f 0.07 to 0.25 f 0.03) in post-monsoon and winter, along with larger & Aring;ngstrom exponent (1.05 f 0.74 to 1.13 f 0.11), indicated smaller particles. Satellite-derived (OMI and MAIAC) AOD500 showed weak to moderate correlation with ground-based measurements at Mohal (R = 0.4639 for MAIAC, R = 0.1402 for OMI) and Katarmal (R = 0.3976 for MAIAC, R = 0.2980 for OMI). Using optical properties of aerosols and clouds (OPAC) and Santa Barbara discrete ordinate radiative transfer (SBDART) models, the short-wave aerosol radiative forcing (SWARF) was found negative at the surface and top of the atmosphere but positive in the atmosphere, suggesting significant surface cooling and atmospheric warming leading to high heating rates, respectively. Annual mean atmospheric radiative forcing was 27.36 f 6.00 Wm- 2 at Mohal and 21.87 f 7.26 Wm- 2 at Katarmal. These findings may have consequences for planning air pollution strategies and understanding the effects of regional climate change.
Future anthropogenic land use change (LUC) may alter atmospheric carbonaceous aerosol (black carbon and organic aerosol) burden by perturbing biogenic and fire emissions. However, there has been little investigation of this effect. We examine the global evolution of future carbonaceous aerosol under the Shared Socioeconomic Pathways projected reforestation and deforestation scenarios using the CESM2 model from present-day to 2100. Compared to present-day, the change in future biogenic volatile organic compounds emission follows changes in forest coverage, while fire emissions decrease in both projections, driven by trends in deforestation fires. The associated carbonaceous aerosol burden change produces moderate aerosol direct radiative forcing (-0.021 to +0.034 W/m2) and modest mean reduction in PM2.5 exposure (-0.11 mu g/m3 to -0.23 mu g/m3) in both scenarios. We find that future anthropogenic LUC may be more important in determining atmospheric carbonaceous aerosol burden than direct anthropogenic emissions, highlighting the importance of further constraining the impact of LUC.
Permafrost thaw has the potential to release ancient particulate and dissolved organic matter that had been stored for thousands of years. Previous studies have shown that dissolved organic matter from permafrost is very labile and can be used by heterotrophic microbes close to the thaw area. However, it is unknown if ancient particulate organic matter can also be utilized. This study aims to investigate whether arctic microbial communities (bacteria and Archaea) incorporate ancient organic matter potentially released from thawing permafrost into their biomass. We compare and contrast the radiocarbon signatures of microbial lipids and higher plant biomarkers (representing terrestrial organic matter) from five soil profiles and seven deltaic lake sediment cores from the Mackenzie River drainage basin, Arctic Canada. In the surface soils, modern to post-modern short-chain fatty acids (SCFA) ages indicate in situ microbial production, with differential rates of organic carbon (OC) cycling depending on soil moisture. In contrast, SCFA in deeper soils display millennial ages, which likely represent the microbial necromass preserved through mineral association. In deltaic lakes that are disconnected from the river, generally old SCFA suggests the uptake of pre-aged OC by bacteria. In perennially connected lakes, pre-aged SCFA could originate from in situ microbial uptake of old OC or from the Mackenzie River. Higher plant-derived long-chain fatty acids (LCFA) present older radiocarbon ages, reflecting mineral stabilization during either pre-aging in soils (for high closure lakes) or riverine transport (for no and low closure lakes). Archaeal lipids are younger than SCFA and LCFA in high closure lakes, and older in low and no closure lakes, mirroring bulk radiocarbon signatures due to their heterotrophic production. These radiocarbon signatures of bacterial biomarker lipids may therefore reflect microbial incorporation of ancient OC (e.g., derived from permafrost thaw) or exceptional preservation (e.g., through mineral stabilization). Hence, even in relatively high OC environments such as arctic aquatic ecosystems, microbes can rely on ancient OC for their growth.
Carbonaceous aerosol, including organic carbon (OC) and elemental carbon (EC), has significant influence on human health, air quality and climate change. Accurate measurement of carbonaceous aerosol is essential to reduce the uncertainty of radiative forcing estimation and source apportionment. The accurate separation of OC and EC is controversial due to the charring of OC. Therefore, the development of reference materials (RM) for the validation of OC/EC separation is an important basis for further study. Previous RMs were mainly based on ambient air sampling, which could not provide traceability of OC and EC concentration. To develop traceable RMs with known OC/EC contents, our study applied an improved aerosol generation and mixing technique, providing uniform deposition of particles on quartz filters. To generate OC aerosol with similar pyrolytic property of ambient aerosol, both water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC) were used, and amorphous carbon was selected for EC surrogate. The RMs were analyzed using different protocols. The homogeneity within the filter was validated, reaching below 2%. The long -term stability of RMs has been validated with RSD ranged from 1.7%-3.2%. Good correlation was observed between nominal concentration of RMs with measured concentration by two protocols, while the difference of EC concentration was within 20%. The results indicated that the newly developed RMs were acceptable for the calibration of OC and EC, which could improve the accuracy of carbonaceous aerosol measurement. Moreover, the laboratory-generated EC-RMs could be suitable for the calibration of equivalent BC concentration by Aethalometers. (c) 2024 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
Vulnerability of peat plateaus to global warming was analyzed in northeastern European Russia. A laboratory experiment on artificial incubation of peat was carried out to analyze the resilience of organic matter of frozen peat bogs (palsas) to decomposition. The rate of mineralization of peat organic matter was calculated from data on the CO2 and CH4 emissions from the peat incubated at a temperature of +4 degrees C under artificial aerobic and anaerobic conditions during 1300 days. Peat samples were taken from the active layer (AL), transitional layer (TL), and permafrost layer (PL). The delta 13C and delta 15N isotopes and the C/N, O/C, and H/C ratios were determined as indicators of change in the decomposition rate of organic matter. By the 1300th day of the experiment under aerobic conditions, the total CO2 amount released from the analyzed samples (per 1 g of carbon) was 10.24-37.4 mg C g-1 (on average, 25.76 mg C g-1), while under anaerobic conditions, it was only 2.1-3.38 mg C g-1 (on average, 3.15 mg C g-1). The CH4 emission was detected only in the peat from the transitional layer in very small quantities. The incubation experiment results support the hypothesis that peat plateaus are resilient, especially under anaerobic conditions, regardless the ongoing climate warming.
In South Asia, our understanding of atmospheric aerosols and their optical properties is limited, posing a challenge to comprehending climate change dynamics. This study characterises aerosol optical properties, radiative properties, black carbon (BC) and ozone (O3) at seven South Asian locations, including Nam Co (Tibetan Plateau, TP), Dhaka, Bhola (Bangladesh), and Hanimaadhoo, Kashidhoo, Male' and Gan (Maldives). The study utilises columnar aerosol data from the Aerosol Robotic Network (AERONET) and reanalysis data from Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) from 2001 to 2020. Notably, during the winter, the highest Aerosol optical depth (AOD) levels were observed in Dhaka (1.0 +/- 0.5) and Bhola (0.8 +/- 0.4) among these seven locations. BC concentrations in Dhaka ranged from 2.1 to 2.8 mu g m-3, while Bhola recorded concentrations between 1.4 and 2.1 mu g m-3. O3 levels across Maldives sites remained consistent, with values ranging between 314 and 345 dobson units (DU), surpassing those in Bangladesh and TP. The analysis shows a significant difference in the rate at which the atmosphere heats (HR) up due to aerosols. Higher heating rates were observed over Kashidhoo during the post-monsoon and winter seasons, while lower values were seen during the pre-monsoon and monsoon seasons, compared with Hanimaadhoo and Male'. It is important to note that Bangladesh had higher HR values than the Maldives. This study helps us better understand the impact of atmospheric aerosols on South Asia's climate and the different seasonal patterns.
Refractory black carbon (rBC) is a primary aerosol species, produced through incomplete combustion, that absorbs sunlight and contributes to positive radiative forcing. The overall climate effect of rBC depends on its spatial distribution and atmospheric lifetime, both of which are impacted by the efficiency with which rBC is transported or removed by convective systems. These processes are poorly constrained by observations. It is especially interesting to investigate rBC transport efficiency through the Asian Summer Monsoon (ASM) since this meteorological pattern delivers vast quantities of boundary layer air from Asia, where rBC emissions are high to the upper troposphere/lower stratosphere (UT/LS) where the lifetime of rBC is expected to be long. Here, we present in situ observations of rBC made during the Asian Summer Monsoon Chemistry and Climate Impact Project of summer, 2022. We use observed relationships between rBC and CO in ASM outflow to show that rBC is removed nearly completely (>98%) from uplifted air and that rBC concentrations in ASM outflow are statistically indistinguishable from the UT/LS background. We compare observed rBC and CO concentrations to those expected based on two chemical transport models and find that the models reproduce CO to within a factor of 2 at all altitudes whereas rBC is overpredicted by a factor of 20-100 at altitudes associated with ASM outflow. We find that the rBC particles in recently convected air have thinner coatings than those found in the UTLS background, suggesting transport of a small number of rBC particles that are negligible for concentration.
Precipitation comes in various phases, including rainfall, snowfall, sleet, and hail. Shifts of precipitation phases, as well as changes in precipitation amount, intensity, and frequency, have significant impacts on regional climate, hydrology, ecology, and the energy balance of the land-atmosphere system. Over the past century, certain progress has been achieved in aspects such as the observation, discrimination, transformation, and impact of precipitation phases. Mainly including: since the 1980s, studies on the observation, formation mechanism, and prediction of precipitation phases have gradually received greater attention and reached a certain scale. The estimation of different precipitation phases using new detection theories and methods has become a research focus. A variety of discrimination methods or schemes, such as the potential thickness threshold method of the air layer, the temperature threshold method of the characteristic layer, and the near-surface air temperature threshold method, have emerged one after another. Meanwhile, comparative studies on the discrimination accuracy and applicability assessment of multiple methods or schemes have also been carried out simultaneously. In recent years, the shift of precipitation from solid to liquid (SPSL) in the mid-to-high latitudes of the Northern Hemisphere has become more pronounced due to global warming and human activities. It leads to an increase in rain-on-snow (ROS) events and avalanche disasters, affecting the speed, intensity, and duration of spring snow-melting, accelerating sea ice and glacier melting, releasing carbon from permafrost, altering soil moisture, productivity, and phenological characteristics of ecosystems, and thereby affecting their structures, processes, qualities, and service functions. Although some progress has been made in the study of precipitation phases, there remains considerable research potential in terms of completeness of basic data, reliability of discrimination schemes, and the mechanistic understanding of the interaction between SPSL and other elements or systems. The study on shifts of precipitation phases and their impacts will play an increasingly important role in assessing the impacts of global climate change, water cycle processes, water resources management, snow and ice processes, snow and ice-related disasters, carbon emissions from permafrost, and ecosystem safety.
In this study, we used satellite observations to identify 10 typical dust-loading events over the Indian Himalayas. Next, the aerosol microphysical and optical properties during these identified dust storms are characterized using cotemporal in situ measurements over Mukteshwar, a representative site in Indian Himalayas. Relative to the background values, the mass of coarse particles (size range between 2.5 and 10 mu m) and the extinction coefficient were found to be enhanced by 400% (from 24 +/- 15 to 98 +/- 40 mu g/m3) and 175% (from 89 +/- 57 Mm-1 to 156 +/- 79 Mm-1), respectively, during these premonsoonal dust-loading events. Moreover, based on the air mass trajectory, these dust storms can be categorized into two categories: (a) mineral dust events (MDEs), which involve long-range transported dust plumes traversing through the lower troposphere to reach the Himalayas and (b) polluted dust events (PDEs), which involve short-range transported dust plumes originating from the arid western regions of the Indian subcontinent and traveling within the heavily polluted boundary layer of the Gangetic plains before reaching the Himalayas. Interestingly, compared to the background, the SSA and AAE decrease during PDEs but increase during MDEs. More importantly, we observe a twofold increase in black carbon concentrations and the aerosol absorption coefficient (relative to the background values) during the PDEs with negligible changes during MDEs. Consequently, the aerosol-induced snow albedo reduction (SAR) also doubles during MDEs and PDEs relative to background conditions. Thus, our findings provide robust observational evidence of substantial dust-induced snow and glacier melting over the Himalayas.