共检索到 5

Currently, our understanding of material-scale deterioration resulting from meteorologically induced variations in pore water pressure and its significant impact on infrastructure slopes is limited. To bridge this knowledge gap, we have developed an extended kinematic hardening constitutive model for unsaturated soils that refines our understanding of weather-driven deterioration mechanisms in heterogeneous clay soils. This model has the capability of predicting the irrecoverable degradation of strength and stiffness that has been shown to occur when soils undergo wetting and drying cycles. The model is equipped with a fully coupled and hysteretic water retention curve and a hysteretic loading-collapse curve and has the capability to predict the irrecoverable degradation of strength and stiffness that occurs during cyclic loading of soils. Here, we employ a fully implicit stress integration technique and give particular emphasis to deriving a consistent tangent operator, which includes the linearisation of the retention curve. The proposed algorithm is evaluated for efficiency and performance by simulating various stress and strain-driven triaxial paths, and the accuracy of the integration technique is evaluated through the use of convergence curves.

期刊论文 2025-02-01 DOI: 10.1002/nag.3878 ISSN: 0363-9061

The advantages of constitutive models in energy-conservation frameworks have been widely addressed in the literature. A key component is choosing an appropriate energy potential to derive the hyperelastic constitutive equations. This article investigates the advantages and limitations of different energy potentials found in the literature based on mathematical conditions to guarantee numerical stability, such as the desired order of homogeneity, positive and non-singular stiffness within the application range, and equivalent Poisson's ratio from a constitutive modelling standpoint. Potentials meeting the aforementioned criteria are employed to simulate the response envelopes of Karlsruhe fine sand (KFS). Moreover, the performance of the potentials, in conjunction with plasticity theories, is examined. To achieve this, the hyperelastic constitutive equations have been coupled with the bounding surface plasticity model of Dafalias and Manzari to reproduce the soil response in a hyperelastic-plastic frame. Finally, one of the potentials is modified, whereas recommendations for incorporating other appropriate free energy functions into different soil constitutive models are presented. Furthermore, 100 closed elastic strain cycles have been simulated with the bounding surface plasticity model of Dafalias and Manzari considering the original hypoelastic stiffness and hyperelastic-plastic constitutive equations. Using the hypoelastic framework in the simulation led to stress accumulation after 100 closed elastic strain loops, while a reversible response was predicted using the hyperelastic stiffness tensor.

期刊论文 2025-01-01 DOI: 10.1002/nag.3852 ISSN: 0363-9061

In this paper, a state-dependent, bounding surface plasticity model that simulates the behavior of unsaturated granular soils is presented. An unsaturated, soil mechanics-compatible elastoplastic response is adopted in which no part of the response occurs in a purely elastic fashion. To create an appropriate hydro-mechanical coupling, a newer generation stress framework, consisting of the Bishop-type effective stress and a second stress variable, is used in conjunction with a soil-water characteristic curve function. Details regarding the model development, parameter estimation, and assessment of the model's predictive capabilities are outlined. With a single set of parameter values, the model realistically simulates the main features that characterize the shear and volumetric behavior of unsaturated granular soils over a wide range of matric suction, density, and net confining pressure.

期刊论文 2024-06-01 DOI: 10.3390/geosciences14060148

During undrained cyclic loading, clayey soils experience substantial stiffness and strength degradation when subjected to shear amplitudes exceeding a critical threshold. This paper presents an enhanced bounding surface rate-independent plasticity model, an evolution of the previous SANICLAY model, tailored to capture this specific behavior during cyclic loading. A distinguishing feature of the proposed model is the introduction of an activation mechanism. This mechanism triggers degradation modeling based on the applied cyclic shear amplitude. To measure this amplitude, the activation mechanism incorporates a novel state variable that serves as a proxy for the applied cyclic stress. The effectiveness of the proposed model is demonstrated by comparing it to experimental data from various materials subjected to cyclic shearing under undrained conditions. The study encompasses a broad range of constant strain or stress amplitudes. Compared to the reference model, the proposed model exhibits improved predictive accuracy for the stress-strain response of clays at small amplitudes of cyclic loading and large number of cycles. Furthermore, it accounts for strength degradation due to cyclic loading.

期刊论文 2024-06-01 DOI: 10.1002/nag.3728 ISSN: 0363-9061

Many constitutive models have been proposed to describe the mechanical behavior of cemented soil at large strains (above 1%). Less attention has been paid to the highly nonlinear stress-strain behavior at small strains, which are important for accurately analyzing the serviceability of many infrastructures. In this study, a bounding surface model was developed to simulate cemented soil behavior from small to large strains. Some new formulations were proposed to improve the modeling of small-strain behavior, including (1) the elastic shear modulus over a wide range of stress conditions, and (2) the nonlinear degradation of bonding strength (pb) with damage strain (epsilon d) in the lnpb-epsilon d plane. The new model was applied to simulate drained and undrained triaxial tests on cemented soils at different cement contents and confining pressures. Comparisons between the measured and computed results show that the new model can well capture many important aspects of cemented soil behavior, especially the elastic shear modulus at very small strains and stiffness degradation at small strains. Furthermore, the model gives a good simulation of strain softening/hardening and dilatancy/contraction during shearing under various confining pressure and void ratio conditions.

期刊论文 2024-02-01 DOI: 10.1061/JGGEFK.GTENG-11604 ISSN: 1090-0241
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页