Excessive boron (B) levels in soil can lead to toxicity in plants, impacting their growth and productivity. Effective strategies to reduce B uptake are important for improving crop performance in contaminated soils. This experiment aimed to investigate the effects of chicken manure incineration ash (CMA) and triple superphosphate (TSP) on B uptake in barley plants grown in B-contaminated soil. Before the experiment, the chemical composition and molecular structure of CMA were analyzed using XRF, XRD and SEM. The soil was contaminated with 15 mg kg-1 of B, and both TSP and CMA were applied at rates of 40, 80, and 160 mg kg-1 of phosphorus (P). Neither P source had a significant impact on plant dry weight. However, increasing doses of applied TSP and CMA increased plant P concentration while significantly decreasing B concentration. Particularly with CMA applied at 160 mg kg-1 P dose, plant B concentration decreased to the lowest level of 194 mg kg-1. Increasing P doses led to a slight decrease in plant silicon (Si) concentration. The pH of soil samples taken after the experiment slightly increased with CMA treatments compared to TSP. The available P concentration in soils increased with increasing P doses. The available B concentration decreased with increasing P doses, especially reducing to the lowest level of 2.52 mg kg-1 in soils with a 40 mg kg-1 P, CMA. In conclusion, in addition to the effect of P, the molecular structure of P is also important in reducing B uptake in barley.
The study aimed to determine how the physiological responses of the sunflower (Helianthus annuus L.) plant were affected by prolonged drought stress, salinity stress, and boron application, as well as to assess the recovery dynamics following re-watering. The experimental design included well-watered (WW 80% watering), drought stress (DS, 20% watering) salinity stress (SS, 0 control and 13 dS m-1), boron toxicity (Na2O5B2O3.10H2O, at different doses of 0 and 8 mg L-1) and re-watering after a long-term period of drought stress (24 days). The well-irrigated (80% WW) treatment, which included all factors as a the non-stressed control treatment during the experiment was carried out with five replications. Morphological, physiological and biochemical analyses of plants were measured at four time points: at the 10th and 24th days after the onset of the drought stress period and after re-watering, at 2nd and 7th days following. The relative membrane permeability was increased and relative water content was decreased because drought and salinity stress limited water availability and caused an imbalance in the water status of the leaves and stem of the plant. Even though high levels of Na+ and Cl- ions interfered with essential nutrient uptake under drought stress and boron application, Ca+2 ion levels in the leaves significantly increased in the leaves of plants in areas treated with drought, salt, and boron after re-watering. Extended or intense drought and salinity conditions harmed the phloem and xylem tissue cells of the stem by changing cell size and density, which in turn disrupted biochemical processes, including the functioning of water channels under challenging circumstances. Particularly under conditions of salt and drought stress, the vascular bundles in the plant stem were observed to either shrink significantly or assume an irregular shape. Long-term drought reduced relative water content (RWC) values, resulting in plant dehydration and increased osmotic pressure (RMP) in leaf cells, further exacerbated by salinity and drought stress. The plant attempted to regain some of its characteristics in response to these severe stress conditions after re-watering. However, 24 days after the long dry period, even if watering was re-applied, the growth power of the plant was reduced due to the disturbance in membrane permeability as a result of excessive cell damage.
Key messageBoron is essential for plants, but excess can induce toxicity.AbstractBoron (B) is a vital micronutrient for plants, but excess B can induce toxicity symptoms and reduce crop yields. B bioavailability depends on soil properties, including clay type, pH, and organic matter content. Symptoms of B toxicity include reduced shoot and root growth, leaf chlorosis and necrosis, impaired photosynthesis, and disrupted pollen development. This review paper examines the current knowledge on B toxicity mechanisms, tolerance strategies, and management approaches in plants. This review covers (1) factors affecting B bioavailability; (2) toxicity symptoms in plants; (3) uptake, transport, and detoxification mechanisms; and (4) strategies. To mitigate toxicity, plants reduce B uptake, activate efflux transporters, compartmentalize B, and enhance antioxidant systems. On the basis of this review, future research should focus on identifying novel tolerance mechanisms, exploring genetic strategies for improved B management, and developing innovative agronomic interventions. These insights will facilitate the breeding and management of crops for enhanced productivity under B toxicity stress.
Nutrient imbalances, such as high boron (B) stress, occur within, as well as across, agricultural systems worldwide and have become an important abiotic factor that reduces soil fertility and inhibits plant growth. Sugar beet is a B-loving crop and is better suited to be grown in high B environments, but the methods and mechanisms regarding the enhancement of high-B stress tolerance traits are not clear. The main objective of this research was to elucidate the effects of the alone and/or combined foliar spraying of zinc sulfate (ZnSO4) and methyl jasmonate (MeJA) on the growth parameters, tolerance, and photochemical performance of sugar beet under high-B stress. Results demonstrated that the photosynthetic performance was inhibited under high-B stress, with a reduction of 11.33% in the net photosynthetic rate (Pn) and an increase of 25.30% in the tolerance index. The application of ZnSO4, MeJA, and their combination enhanced sugar beet's adaptability to high-B stress, with an increase in Pn of 9.22%, 4.49%, and 2.85%, respectively, whereas the tolerance index was elevated by 15.33%, 8.21%, and 5.19%, respectively. All three ameliorative treatments resulted in increased photochemical efficiency (F-v/F-m) and the photosynthetic performance index (PIABS) of PSII. Additionally, they enhanced the light energy absorption (ABS/RC) and trapping capacity (DIO/RC), reduced the thermal energy dissipation (TRO/RC), and facilitated the Q(A) to Q(B) transfer in the electron transport chain (ETC) of PSII, which collectively improved the photochemical performance. Therefore, spraying both ZnSO4 and MeJA can better alleviate high-B stress and promote the growth of sugar beet, but the combined spraying effect of ZnSO4 and MeJA is lower than that of individual spraying. This study provides a reference basis for enhancing the ability of sugar beet and other plants to tolerate high-B stress and for sugar beet cultivation in high B areas..
Both copper (Cu) excess and boron (B) deficiency are often observed in some citrus orchard soils. The molecular mechanisms by which B alleviates excessive Cu in citrus are poorly understood. Seedlings of sweet orange (Citrus sinensis (L.) Osbeck cv. Xuegan) were treated with 0.5 (Cu0.5) or 350 (Cu350 or Cu excess) mu M CuCl2 and 2.5 (B2.5) or 25 (B25) mu M HBO3 for 24 wk. Thereafter, this study examined the effects of Cu and B treatments on gene expression levels revealed by RNA-Seq, metabolite profiles revealed by a widely targeted metabolome, and related physiological parameters in leaves. Cu350 upregulated 564 genes and 170 metabolites, and downregulated 598 genes and 58 metabolites in leaves of 2.5 mu M B-treated seedlings (LB2.5), but it only upregulated 281 genes and 100 metabolites, and downregulated 136 genes and 40 metabolites in leaves of 25 mu M B-treated seedlings (LB25). Cu350 decreased the concentrations of sucrose and total soluble sugars and increased the concentrations of starch, glucose, fructose and total nonstructural carbohydrates in LB2.5, but it only increased the glucose concentration in LB25. Further analysis demonstrated that B addition reduced the oxidative damage and alterations in primary and secondary metabolisms caused by Cu350, and alleviated the impairment of Cu350 to photosynthesis and cell wall metabolism, thus improving leaf growth. LB2.5 exhibited some adaptive responses to Cu350 to meet the increasing need for the dissipation of excessive excitation energy (EEE) and the detoxification of reactive oxygen species (reactive aldehydes) and Cu. Cu350 increased photorespiration, xanthophyll cycle-dependent thermal dissipation, nonstructural carbohydrate accumulation, and secondary metabolite biosynthesis and abundances; and upregulated tryptophan metabolism and related metabolite abundances, some antioxidant-related gene expression, and some antioxidant abundances. Additionally, this study identified some metabolic pathways, metabolites and genes that might lead to Cu tolerance in leaves.
To address the issue of high fracture and wear failure rates caused by the lack of toughness and abrasion resistance in the steel used for soil-engaging components of tillage machinery, a novel composite heat treatment process, normalizing and intercritical quenching and tempering (NIQT), is proposed. By regulating the austenitizing heating temperature in the intercritical area (ferrite/austenite two-phase area), the type, content, and distribution of phases in the 27MnCrB5 test sample could be precisely controlled, which further influenced the mechanical properties of the material. The results demonstrated that a multiphase composite microstructure, predominantly consisting of martensite and ferrite, could be obtained in the 27MnCrB5 steel treated by the NIQT process. The results of an EBSD test indicated that the predominant type of grain boundary following the NIQT heat treatment was a high-angle grain boundary (approximately 59.5%), which was favorable for hindering crack propagation and improving the impact toughness of the material. The results of the mechanical tests revealed that, when the quenching temperature was set to 790 degrees C, the 27MnCrB5 steel attained excellent comprehensive mechanical properties, with a tensile strength of 1654 MPa, elongation of 10.4%, impact energy of 77 J, and hardness of 530 HV30. Compared with conventional heat treatment processes for soil-engaging components, this novel process has the potential to enhance the performance of soil-engaging components and prolong their service life.
Aluminum (Al) toxicity in acidic soils is a major abiotic stress that negatively impacts plant growth and development. The toxic effects of Al manifest primarily in the root system, leading to inhibited root elongation and functionality, which impairs the above-ground organs of the plant. Recent research has greatly improved our understanding of the applications of small molecule compounds in alleviating Al toxicity. This study aimed to investigate the role of boron (B), silicon (Si), and their combination in alleviating Al toxicity in soybeans. The results revealed that the combined application significantly improved the biomass and length of soybean roots exposed to Al toxicity compared to B and Si treatments alone. Our results also indicated that Al toxicity causes programmed cell death (PCD) in soybean roots, while B, Si, and their combination all alleviated the PCD induced by Al toxicity. The oxidative damage induced by Al toxicity was noticeably alleviated, as evidenced by lower MAD and H2O2 accumulation in the soybean roots treated with the B and Si combination. Moreover, B, Si, and combined B and Si significantly enhanced plant antioxidant systems by up-regulating antioxidant enzymes including CAT, POD, APX, and SOD. Overall, supplementation with B, Si, and their combination was found to alleviate oxidative damage and reduce PCD caused by Al toxicity, which may be one of the mechanisms by which they alleviate root growth inhibition due to Al toxicity. Our results suggest that supplementation with B, Si, and their combination may be an effective strategy to improve soybean growth and productivity against Al toxicity.