In this study, six rock-socketed bored piles were tested in the field to investigate the bearing characteristics of rock-socketed bored piles in silty clay formations in coastal areas, and the model piles were simulated and optimized using the finite element (FE) method. The results showed that the lateral resistance of the piles in the clay layer is less than 50 kPa, and the lateral resistance of the rock-embedded portion is within 136.2-166.4 kPa. Compared with increasing the rock-embedded depth, increasing the diameter of the test piles can improve their vertical bearing capacity more effectively. The average horizontal critical load (Hcr) increased by 84.54 %, and the average horizontal ultimate load (Hu) increased by 50.3 % for the 800 mm diameter piles compared to the 600 mm diameter piles. Also, at the end of the test, the 600 mm diameter test piles showed severe damage at 6-9.5 D below the mud surface and were more susceptible to instability damage than the 800 mm diameter test piles. In soft clay strata, the 'm' values converged rapidly with increasing horizontal displacement and stabilized when the displacement exceeded 10 mm. The FE simulations confirmed that the horizontal displacement of the pile mainly occurs at 4 m depth below the mud surface, and the displacement of the test pile can be effectively reduced by reinforcing the soil around the pile. The silt at the bottom of the pile is one of the critical factors causing the uneven settlement of the test pile, severely affecting the vertical bearing capacity of the pile foundation.
This paper presents an analysis of long, large-diameter bored piles' behavior under static and dynamic load tests for a megaproject located in El Alamein, on the northern shoreline of Egypt. Site investigations depict an abundance of limestone fragments and weak argillaceous limestone interlaid with gravelly, silty sands and silty, gravelly clay layers. These layers are classified as intermediate geomaterials, IGMs, and soil layers. The project consists of high-rise buildings founded on long bored piles of 1200 mm and 800 mm in diameter. Forty-four (44) static and dynamic compression load tests were performed in this study. During the pile testing, it was recognized that the pile load-settlement behavior is very conservative. Settlement did not exceed 1.6% of the pile diameter at twice the design load. This indicates that the available design manual does not provide reasonable parameters for IGM layers. The study was performed to investigate the efficiency of different approaches for determining the design load of bored piles in IGMs. These approaches are statistical, predictions from static pile load tests, numerical, and dynamic wave analysis via a case pile wave analysis program, CAPWAP, a method that calculates friction stresses along the pile shaft. The predicted ultimate capacities range from 5.5 to 10.0 times the pile design capacity. Settlement analysis indicates that the large-diameter pile behaves as a friction pile. The dynamic pile load test results were calibrated relative to the static pile load test. The dynamic load test could be used to validate the pile capacity. Settlement from the dynamic load test has been shown to be about 25% higher than that from the static load test. This can be attributed to the possible development of high pore water pressure in cohesive IGMs. The case study analysis and the parametric study indicate that AASHTO LRFD is conservative in estimating skin friction, tip, and load test resistance factors in IGMs. A new load-settlement response equation for 600 mm to 2000 mm diameter piles and new recommendations for resistance factors phi qp, phi qs, and phi load were proposed to be 0.65, 0.70, and 0.80, respectively.
The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tipgrouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.
Large-diameter bored piles can safely transmit loads from structures by skin friction to the surrounding soil strata and end bearing at the bedrock layer, thereby providing a high compressive capacity. High-Strain Dynamic Testing (HSDT) provides a unique alternative technique to traditional Static Load Testing (SLT) for determining the static compressive resistance of the bored piles, considering its quicker performance and significant cost reductions. This article's main objective is to numerically explore the performance of large-diameter bored piles during the HSDT and to understand their dynamic behavior under an axial compressive impact force. This research is based on testing pile foundations for reinforced concrete mixed-use towers in the coastal zone of New Alamein City, Egypt. The tested pile is a 1.20 m diameter bored pile. Numerical modeling is performed to simulate both the HSDT and the SLT for two piles at the same site. Non-linear axisymmetric finite element modeling is employed to validate both test records and develop some sort of matching between the two tests. As lumped models, the developed numerical models use the signal-matching process, which is conducted by varying and adopting the strength parameters and deformation characteristics of the ground or soil deposit and the soil-pile interface. The predicted load-displacement curves, developed from analyzing dynamic records employing the Modified Unloading Point (MUP) method, are consistent with the field records. The verified non-linear models are utilized to accomplish a comparative parametric analysis to better understand the drop-mass system aspects. The analysis results emphasize the significance of employing adequate impact energy (i.e., dropping height and mass) to move the pile top to a sufficient extent to mobilize its full resistance. However, a longer impact duration, i.e., larger mass, is more effective for achieving a deeper high-strain wave. The impact load should be developed by a larger drop mass with a lower drop height, not a smaller drop mass with a higher drop height. The results also indicate that, for relatively longer piles, the skin friction of the upper layers surrounding the pile shaft is fully mobilized, whereas the skin resistance of the lower layers is not fully mobilized, regarding the stress wave phenomenon effect. Finally, this study's findings can be employed to develop guidelines and design procedures for the HSDT to be effectively performed on bored piles.