共检索到 8

Microplastics (MPs) have garnered widespread attention as an emerging global contaminant. However, the impacts of MPs on black soil health remain unclear. A meta-analysis of 337 cases from 33 studies was conducted to elucidate the effects of MPs on black soil health. The analysis incorporated 35 indicators, including soil properties, soil enzymes, plant growth, soil animal health, and soil microbial diversity. We investigated the effects of MPs properties, such as particle type, size, concentration, and exposure duration, on soil health. Results showed that MPs led to notable increases in SOM, DOC, available nitrogen by 31.84 %, 14.35 %, and 12.45 %, respectively, while decreasing nitrate nitrogen by 12.89 %. In addition, MPs exposure enhanced soil urease activity by 11.24 % but reduced phosphatase activity by 6.62 %. MPs also diminished microbial alpha-diversity, caused oxidative damage in earthworms, and suppressed plant germination rates. Notably, smaller MPs, higher concentrations, longer exposure periods, and conventional MPs have more detrimental effects on soil health. By applying the entropy weight method combined with the analytical hierarchy process, we quantified the overall impact of MPs on black soil health as a 12.09 % decrease. Our findings underscore the risks of persistent MPs pollution to black soil health.

期刊论文 2025-06-15 DOI: 10.1016/j.jhazmat.2025.137850 ISSN: 0304-3894

The accumulation of soil organic carbon (SOC) and total nitrogen (TN) is easily accomplished by returning crop straw, which strongly affects the formation and pore structure of aggregates, especially in black soil. We returned maize straw at different rates (6,000, 9,000, 12,000 and 15,000 kg ha(-1)) for nine years to investigate its influence on the SOC and TN contents in the SOC fractions of aggregates by combining size and density fractionation. Their subsequent influences on pore morphology and size distribution characteristics were examined using X-ray micro-computed tomography scanning (mu CT). The results showed that returning straw significantly increased the contents of C and N in the SOC fractions of aggregates, especially at the return rates of 12,000 and 15,000 kg ha(-1), which in turn promoted aggregate formation and stability, and ultimately amended pore structure. The pore size>100 mu m, porosity (>2 mu m), and morphological characteristics (anisotropy, circularity, connectivity and fractal dimension) significantly increased, but the total number of pores significantly decreased (P<0.05). Our results indicated that the amendment of the pore morphology and size distribution of soil aggregates was primarily controlled by the higher contents of C and N in the density fractions of aggregates, rather than in the aggregate sizes. Furthermore, this pore network reconfiguration favored the storage of C and N simultaneously. The findings of this study offer valuable new insights into the relationships between C and N storage and the pore characteristics in soil aggregates under straw return.

期刊论文 2025-04-01 DOI: 10.1016/j.jia.2024.08.003 ISSN: 2095-3119

Gully erosion on agricultural land severely damages land resources and affects agricultural production. Topographic features, tillage methods, and roads are major elements constituting the farmland landscape, but the effect of their distribution in the farmland on the gully erosion is still unclear. This study examined the long-term impacts of changes in the farmland environment and climate change on gully erosion over a long temporal scale of nearly 60 years, the results showed that farmland reclamation over the past 60 years had led to a 2324.2 % increase in gully length density and a 3563.3 % increase in gully area density. The increase in annual rainfall amount and the frequency of extreme rainstorms had led to a rapid increase of gully erosion intensity in the last decade, with an average development rate in length density and area density of 61.5 m km- 2 and 778.7 m2 km- 2, respectively. Farmlands with slope aspects between 135 and 270 degrees were more prone to gully erosion, which was related to the redistribution of snow on hillslopes caused by prevailing wind directions. Tillage methods and roads simultaneously affect gully erosion, with newly formed gullies located in farmlands and roadsides accounting for 63.0 % and 29.8 %. Gullies in regions where the angle between furrows and unpaved roads exceeded 70 degrees accounted for 61.1 % of the total roadside gullies. Over the last decade, the annual average increase of gully length and area was 9.8 m yr-1 and 246.1 m2 yr-1. The development rate of gully area was significantly correlated with the drainage area.

期刊论文 2025-02-01 DOI: 10.1016/j.catena.2024.108623 ISSN: 0341-8162

In the black soil region of Northeast China, the issue of gully erosion persists as a significant threat, resulting in extensive damage to farmland, severe degradation of the black soil, and decreased productivity. It is therefore of utmost importance to accurately identify areas that are susceptible to gully erosion to effectively prevent and control its negative impact. This study tried to utilize geographical detectors (geodetectors) as a means to identify the factors that contribute to the distribution of gullies and assess the risk of gully erosion (GER) in five catchments within the region, with areas ranging from approximately 80 km(2)-- km(2) . By employing the geodetectors method, fourteen geo-environmental factors were analyzed, including topographic attributes (such as aspect, catchment area, convergence index, elevation, plan curvature, profile curvature, slope length, slope, stream power index, and topographic wetness index), channel network distance, vegetation index (NDVI and EVI), as well as land use/ land cover (LULC). The modeling of GER was conducted using the random forest algorithm (RFA). Out of the fourteen examined geo-environmental factors, only a subset, comprising less than or equal to 50%, demonstrated a significant (p < 0.05) influence on the spatial distribution of gullies. These selected factors were sufficient in assessing GER, with LULC (mean q-value 1 / 4 0.270) and elevation (mean qvalue 1 / 4 0.113) identified as the two most important factors. Furthermore, the RFA exhibited satisfactory performance across all catchments, achieving AUC values ranging from 0.712 to 0.933 (mean 1 / 4 0.863) in predicting GER. Overall, the catchment areas were classified into high, moderate, low, and very low-risk levels, representing 9.67%-15.95%, 19.28%-26.08%, 24.59%-30.55%, and 30.54%-39.08% of the total area, respectively. Importantly, a significant positive linear relationship (r(2) = 0.722, p < 0.05) was observed between the proportion of cropland area and the occurrence of high-level GER. Although the primary risk levels were categorized as low and very low, the proportion of high-risk levels exceeded the existing gully coverage (0.34%-3.69%). These findings highlight the substantial potential for gully erosion and underscore the necessity for intensified efforts in the prevention and control of gully erosion within the black soil region of Northeast China. (c) 2024 International Research and Training Center on Erosion and Sedimentation, China Water and Power Press, and China Institute of Water Resources and Hydropower Research. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY- NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

期刊论文 2024-12-01 DOI: 10.1016/j.iswcr.2024.07.004 ISSN: 2095-6339

The black soil region of Northeast China is the largest commercial grain production base in China, accounting for about 25% of the total in China. In this region, the water erosion is prominent, which seriously threatens China's food security. It is of great significance to effectively identify the erosion-prone points for the prevention and control of soil erosion on the slope of the black soil region in Northeast China. This article takes the Tongshuang small watershed (Heilongjiang Province in China) as an example, which is dominated by hilly landforms with mainly black soil and terraces planted with corn and soybeans. Based on the 2.5 cm resolution Digital Elevation Model (DEM) reconstructed by unmanned aerial vehicles (UAVs), we explore the optimal resolution for hydrological simulation research on sloping farmland in the black soil region of Northeast China and explore the critical water depth at which erosion damage occurs in ridges on this basis. The results show that the following: (1) Compared with the 2 m resolution DEM, the interpretation accuracy of field roads, wasteland, damaged points, ridges and cultivated land at the 0.2 m resolution is increased by 4.55-27.94%, which is the best resolution in the study region. (2) When the water depth is between 0.335 and 0.359 m, there is a potential erosion risk of ridges. When the average water depth per unit length is between 0.0040 and 0.0045, the ridge is in the critical range for its breaking, and when the average water depth per unit length is less than the critical range, ridge erosion damage occurs. (3) When local erosion damage occurs, the connectivity will change abruptly, and the remarkable change in the index of connectivity (IC) can provide a reference for predicting erosion damage.

期刊论文 2024-09-01 DOI: 10.3390/w16182568

The preservation of cultivated land quality stands as a vital prerequisite for ensuring food security and sustainability. In the black soil area of northeast China, a large amount of fertilizer was used to stabilize grain production in its early stages, which damaged soil structure and polluted the ecological environment. Based on the panel data of fertilization intensity of 48 districts and counties in Heilongjiang Province from 2010 to 2020, this study takes the implementation of the Three-Year Action Plan for the Protection of Black Soil Farmland in Heilongjiang Province for the (2018-2020) (TYAP) policy as a natural experiment, and uses the difference-indifferences (DiD) method to identify the causal effect of the policy on the local fertilization intensity. The results of the empirical study showed that the implementation of the TYAP policy significantly reduced the fertilization intensity of the black soil cultivated land implemented by the policy during the implementation period, which resulted in a decrease of 11.97% on average compared with the areas without the policy implementation. Several robustness tests provided additional confirmation of the aforementioned findings. This study further revealed that the policy mitigated fertilization intensity by fostering advancements in agricultural mechanization.

期刊论文 2024-04-01 DOI: 10.1016/j.jenvman.2024.120629 ISSN: 0301-4797

There is a knowledge gap in the interaction between the effects of herbicide thiencarbazone-methyl center dot isoxaflutole on soil microflora and environmental parameters, which leads to a lack of measures in mitigating damage to bacterial communities from the herbicide use. The impacts of thiencarbazone-methyl center dot isoxaflutole and soil pa-rameters on the diversity, structure and functions of soil bacterial communities were clarified, and the effects and potential mitigation mechanisms of nitrapyrin and modified attapulgite with bacterial function intervention on bacterial communities were explored through incubation and field experiments. The results showed that as thiencarbazone-methyl center dot isoxaflutole application increased, the stress on soil bacterial community structure and diversity also increased. The relative abundance of bacteria including Aridibacter and GP7 and functional an-notations including nitrate_reduction were significantly negatively correlated with thiencarbazone-methyl-center dot isoxaflutole residues in soils. The remarkable toxic effects on the Adhaeribacter bacteria were detected at the recommended dose of thiencarbazone-methyl center dot isoxaflutole application. The residue of isoxaflutole (one of the effective ingredients of thiencarbazone-methyl center dot isoxaflutole) directly and more strongly affected the diversity of soil bacterial communities than thiencarbazone-methyl. Increasing soil pH was recognised as an important factor in improving the diversity and structure of soil microflora based on the results of the Mantel test and canonical correspondence analysis. Supplemental use of nitrapyrin or modified attapulgite was found to increase soil pH, and further improve the expression of manganese oxidation function annotation. This contributed to the increased bacterial diversity (Shannon index). Therefore, the disturbance of soil microflora caused by thien-carbazone-methyl center dot isoxaflutole application can be mitigated by the use of nitrapyrin and modified attapulgite through raising soil pH.

期刊论文 2024-01-01 DOI: 10.1016/j.envpol.2023.122840 ISSN: 0269-7491

Soil surface roughness (SSR) is an important factor affecting soil erosion and soil nutrient transport. Human tillage leads to increased instability in SSR, and the characteristics of SSR caused by different tillage practices await further study. This research utilizes terrestrial laser scanning (TLS) to measure the SSR of six farmland plots (25 m x 25 m) and analyzes the characteristics of SSR under different tillage practices (plowing, harrowing, ridging, crusting, etc.). The study results show: 1) Different agricultural tillage practices lead to significant differences in SSR. The plowed and harrowed plot corresponds to the maximum (2.49 cm) and minimum (1.5 cm) root mean square height (RMSH), respectively. Correlation length (CL) is more affected by different tillage practices than RMSH. The difference in CL between the ridged and harrowed plot is 2.6 times. 2) Ridging and crusting caused significant directional variation in SSR. The SSR anisotropy of the harrowed plot can be disregarded. 3) Under the condition of measuring soil profile in 12 directions and randomly sampling 70 times in each direction, the profile length must be at least 3 m to ensure that the measurement error of SSR is better than 5% compared to the true value. TLS can measure two-dimensional SSR. Therefore, it is only necessary to ensure that the measurement range is at least 3 m x 3 m. The study results provide a reference for the high-precision measurement of SSR (RMSH and CL) under different agricultural tillage practices.

期刊论文 2024-01-01 DOI: 10.1109/JSTARS.2024.3405952 ISSN: 1939-1404
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页