Sustainable polymers have attracted interest due to their ability to biodegrade under specific conditions in soil, compost, and the marine environment; however, they have comparatively lower mechanical properties, limiting their widespread use. This study explores the effect of incorporating waste soy biomass into sustainable polymers (including biodegradable and biobased) on the thermal and mechanical properties of the resultant blends. The dispersion of the waste soy biomass in the polymer matrix is also investigated in relation to particle size (17 mu m vs. 1000 mu m). Fine waste soy biomass did not significantly affect the melting temperature of the polymers (polyhydroxyalkanoates, polybutylene adipate terephthalate, polybutylene adipate terephthalate/poly(lactic) acid, and biobased linear low-density polyethylene) used in this study, but their enthalpy of fusion decreased after soy was melt-blended with the polymers. The tensile modulus of the polymers filled with fine waste soy biomass powder (17 mu m) was enhanced when melt-blended as compared to unfilled polymers. Additionally, it was found that fine waste soy powder (17 mu m) increased the tensile modulus of the polymer blends without significantly affecting processability, while coarse waste soy meal (1000 mu m) generally reduced elongation at break due to poor dispersion and stress concentration; however, this effect was less pronounced in PHA blends, where improved compatibility was observed.
The production of industrial hemp (Cannabis sativa L.) has expanded recently in the US. Limited agronomic knowledge and supply chain issues, however, stemming from a long-standing cultivation ban, pose a barrier to continued market expansion of hemp, which leads to the import of most hemp products. This review examines the most recent cultivation methods, fertilizer and nutrient requirements, soil management practices, environmental parameters, and post-harvest processing methods, particularly in the context of environmental benefits such as soil phytoremediation and CO2 sequestration. Details of the valorization of hemp biomass into sustainable products, such as fibers, papers, packaging, textiles, biocomposites, biofuels, biochar, and bioplastics, along with current limitations and scope for improvements, are explored. Finally, an overall summary of the life cycle and techno-economic analysis aimed at optimizing their environmental performance and economic feasibility are discussed with a focus on inter with the growing circular economy paradigm.
The fabrication of composite materials from lignin has attracted increasing attention to reducing the dependence of petrochemical-based resources on carbon neutrality. However, the low content of lignin in the biocomposites remains a challenge. Herein, industrial lignin is fractionated by an organic solvent to reduce its structural heterogeneity. Subsequently, the fractionated lignin samples are integrated with polyvinyl alcohol (PVA) to fabricate plastics characterized by uniform thickness and smooth surfaces. The resultant composite films exhibit tensile strength and strain up to 75 MPa and 1050%, respectively, which surpass state-of-the-art lignin-based bioplastics. The mechanism investigations reveal that the enhanced mechanical properties are due to the internal non-covalent interactions derived from the hydroxyl groups of lignin and PVA. Notably, the PVA/lignin films are biodegradable after 92 days' burial in soil. This study paves the way for the rational design of lignin-based biodegradable polymers as sustainable alternatives to conventional plastics.
Escalating usage of non-degradable plastics is raising significant concern. The search for bio-based degradable alternatives commenced far back, and the burgeoning progress in the development of bioplastics is featured as a critical solution to ongoing plastic pollution. Bioplastics are becoming a promising substitute for petroleum-based plastics, depending on the production source and post-use disposal management. Among all the promising materials, microbially produced polyester and polyhydroxybutyrate (PHB) belong to the polyhydroxyalkanoate (PHA) family and are biocompatible and non-toxic. PHB has remarkable thermal and mechanical properties, making it a potential replacement for ubiquitous plastics. In this study, PHB-producing bacteria were isolated from mangrove soil and checked for PHB accumulation using preliminary and confirmatory staining. Out of a total 25 isolates, 13 were found positive for PHB accumulation. Dairy wastewater was used as a cultivation medium for PHB production; the potential PHB-producing strain was selected for morphological and biochemical characterization up to the genus level and was found to be Bacillus sp (3.6 +/- 0.15g/L). Extracted PHB was characterized using FTIR, XRD, and TGA; in FTIR, the characteristic peak was recorded at 1724 cm-1, and XRD showed the crystallinity of PHB. outcome of the present study shows that dairy wastewater is an indispensable medium for PHB production in an eco-friendly way.
This study investigated the effect of cellulose from maize straw and fibre from sugarcane bagasse on the production and characteristics of bioplastic films. Bioplastic films were developed based on varying ratios of cellulose to fibre, including 100:0, 75:25, 50:50, 25:75, and 0:100. The bioplastics' physical, mechanical, biological, thermal, and Fourier Transform Infrared properties were evaluated. The findings depicted a ratio of 75:25 as the best bioplastic film with desirable characteristics for food packaging. This bioplastic (75:25) was slightly moist and had the lowest water absorption (33 %), low moisture content (16 %), lowest water vapour permeability (0.14 g mm/h m2 mmHg), highest tensile strength (3.8 MPa), and highest soil biodegradability potential. The bioplastic also exhibited good thermal gravimetric properties which are essential if the bioplastic is to be used for packaging food. The study highlights the potential of using agricultural residues to create sustainable packaging material.
This study investigated potato starch/agar-based bioplastics' structure, properties, and biodegradability by adding ZnO nanoparticles (NPs) biogenically synthesized using Coriandrum sativum extract. ZnO NPs presented crystalline structure, good optical properties, and a size of 6.75 +/- 1.4 nm, which were added at various concentrations (419.66-104.23 ppm) in bioplastics and their presence was confirmed via EDS elemental analysis and X-ray fluorescence. The highest NPs concentration contributed to a smoother surface, while FTIR and Raman analyses suggested interactions between the NPs and functional groups of the biopolymeric matrix. ZnO NPs addition slightly reduced bioplastic transparency but significantly improved UV-A and UV-B blocking capacities. It also increased hydrophobicity, evidenced by a 22 % reduction in water absorption and a 55 % increase in contact angle. Thermogravimetric analysis (TGA) indicated that NPs raised the bioplastic's thermal stability. Mechanical property tests showed that ZnO NPs concentrations had negligible or negative effects probably due to the heterogeneous distribution of NPs, or the non-isotropic characteristic of the bioplastic. Finally, biodegradability assays in seawater and soil revealed over 43.5 % and 66 % degradation after 15 and 28 days, respectively. Therefore, biosynthesized ZnO NPs mainly enhanced the bioplastic's UV-blocking capacity, hydrophobicity, and thermal properties, offering an eco-friendly option for future studies/applications.
The present study aimed to i) assess the disintegration of a novel bio-packaging during aerobic composting (2 and 6 % tested concentrations) and evaluate the resulting compost ii) analyse the ecotoxicity of bioplastics residues on earthworms; iii) study the microbial communities during composting and in 'earthworms' gut after their exposure to bioplastic residues; iv) correlate gut microbiota with ecotoxicity analyses; v) evaluate the chemicophysical characterisation of bio-packaging after composting and earthworms' exposure. Both tested concentrations showed disintegration of bio-packaging close to 90 % from the first sampling time, and compost chemical analyses identified its maturity and stability at the end of the process. Ecotoxicological assessments were then conducted on Eisenia fetida regarding fertility, growth, genotoxic damage, and impacts on the gut microbiome. The bioplastic residues did not influence the earthworms' fertility, but DNA damages were measured at the highest bioplastic dose tested. Furthermore bioplastic residues did not significantly affect the bacterial community during composting, but compost treated with 2 % bio-packaging exhibited greater variability in the fungal communities, including Mortierella, , Mucor, , and Alternaria genera, which can use bioplastics as a carbon source. Moreover, bioplastic residues influenced gut bacterial communities, with Paenibacillus, , Bacillus, , Rhizobium, , Legionella, , and Saccharimonadales genera being particularly abundant at 2 % bioplastic concentration. Higher concentrations affected microbial composition by favouring different genera such as Pseudomonas, , Ureibacillus, , and Streptococcus. . For fungal communities, Pestalotiopsis sp. was found predominantly in earthworms exposed to 2 % bioplastic residues and is potentially linked to its role as a microplastics degrader. After composting, Attenuated Total Reflection analysis on bioplastic residues displayed evidence of ageing with the formation of hydroxyl groups and amidic groups after earthworm exposure.
The growing amount of plastic waste has significantly worsened environmental pollution, a problem made worse by population growth and non-sustainable manufacturing and consumption practices. This growing concern emphasises the need of developing materials that lessen traditional plastics' harmful impact on the environment. An effective substitute is offered by bioplastics, which are made from natural plant biomass such as lignin, starch, cellulose, and hemicellulose as well as bacterial polyester polymers. There is uncertainty over their actual environmental benefits as a consequence of the challenges associated with their identification, categorisation, and disposal. This study provides a thorough analysis of the biodegradation properties of bioplastics, highlighting how well they function in diverse environmental conditions. Our findings suggest that the pace at which bioplastics decompose varies significantly depending on the kind of material used as well as specific environmental factors like moisture level and microbial activity. These discoveries are crucial for developing waste management strategies and streamlining the production of bioplastics in order to increase sustainability. Subsequent endeavours have to prioritise the improvement of these bioplastics to ensure consistent biodegradation effectiveness and raising public awareness to promote their proper disposal, therefore magnifying their advantageous impacts on reducing plastic pollution.
Bioplastics are biobased or biodegradable plastic synthesized from natural resources with similar features to conventional plastic and environmental sustainability. Seaweed species abundant in the coastal regions of Bangladesh are yet to be explored for developing biodegradable plastic to solve the plastic pollution problem. Semi-refined kappa carrageenan was extracted from Gracilaria sp. with Pressurized Hot Water Extraction (PHWE) and blended with sorbitol and polyethylene glycol 1540 in this study, respectively. The presence of carrageenan and other functional groups was confirmed with FTIR analysis. The bioplastic films showed over 90 % biodegradability after 16 days of soil burial test and 98 % water solubility after immersion for 16 days. Maximum 20 MPa tensile strength and 44 % elongation were observed from the bioplastic films. The polyethylene glycol 1540 blended films showed better physical and mechanical properties. SEM analysis was conducted to evaluate the influence of tensile strength and elongation on the surface integrity of the bioplastic films. The findings indicate that Gracilaria sp. found in the coastal regions of Bangladesh, can be a potential candidate for developing bioplastics for food packaging and many other applications.
A growing number of studies have demonstrated that microplastic (MP) contamination is widespread in terrestrial ecosystems. A wide array of MPs made of conventional, fossil -based polymers differing in size and shape has been detected in soils worldwide. Recently, also MPs made of bioplastics have been found in soils, but there is a dearth of information concerning their toxicity on soil organisms. This study aimed at exploring the potential toxicity induced by the exposure for 28 days to irregular shaped and differently sized MPs made of a fossil -based (polyethylene terephthalate - PET) and a bioplastic (polylactic acid - PLA) polymer on the earthworm Eisenia foetida . Two amounts (1 g and 10 g/kg of soil, corresponding to 0.1% and 1% of soil weight) of both MP types were administered to the earthworms. A multi -level approach was used to investigate the MP -induced effects at sub -individual and individual level. Changes in the activity of antioxidant and detoxifying enzymes, as well as in lipid peroxidation levels, were investigated at specific time -points (i.e., 7, 14, 21 and 28 days) as subindividual responses. Histological analyses were performed to assess effects at tissue level, while the change in digging activity was considered as a proxy of behavioral effects. Earthworms ingested MPs made of both the polymers. MPs made of PET did not induce any adverse effect at none of the biological levels. In contrast, MPs made of PLA caused the modulation of earthworms ' oxidative status as showed by a bell -shaped activity of superoxide dismutase coupled with an increase in glutathione peroxidase activity. However, neither oxidative and tissue damage, nor behavioral alteration occurred. These findings suggest that the exposure to bio-based MPs can cause higher toxicity compared to fossil -based MPs.