The production of industrial hemp (Cannabis sativa L.) has expanded recently in the US. Limited agronomic knowledge and supply chain issues, however, stemming from a long-standing cultivation ban, pose a barrier to continued market expansion of hemp, which leads to the import of most hemp products. This review examines the most recent cultivation methods, fertilizer and nutrient requirements, soil management practices, environmental parameters, and post-harvest processing methods, particularly in the context of environmental benefits such as soil phytoremediation and CO2 sequestration. Details of the valorization of hemp biomass into sustainable products, such as fibers, papers, packaging, textiles, biocomposites, biofuels, biochar, and bioplastics, along with current limitations and scope for improvements, are explored. Finally, an overall summary of the life cycle and techno-economic analysis aimed at optimizing their environmental performance and economic feasibility are discussed with a focus on inter with the growing circular economy paradigm.
White grubs are known as the National pest of India due to their wide distribution and economic damage. Brahmina coriacea grubs are restricted to Tibet, China and the Himalayan region in Jammu and Kashmir, Himachal Pradesh and Uttarakhand. The grubs of B. coriacea were collected from the soil of Solanum tuberosum, Zea mays, Pisum sativum, Rosa rubiginosa, Phaseolus vulgaris, Malus pumila and Pyrus communis from different ecosystems of eight different locations in Himachal Pradesh, India, by the pit sampling method. The grubs of B. coriacea were identified by examining the raster pattern. There was variation in the morphology and biology among different populations of B. coriacea in Himachal Pradesh. The morphological parameters and biological differences were also recorded, such as fecundity rate and damage potential among different ecotypes of B. coriacea collected from various locations. A total of 102 morphologically distinct bacterial isolates were isolated from the gut of different populations of B. coriacea. The gut microbial diversity and abundance were recorded as maximum in the hind gut, compared to other gut compartments. A total of 11 cellulolytic bacterial isolates were identified using morphological, biochemical and 16S rRNA molecular methods. The cellulolytic index of bacterial strains ranged from 0.33 to 2.0. The 11 gut cellulolytic bacteria were identified by using morphological, biochemical and 16S rRNA gene analysis. Staphylococcus haemolyticus was isolated from the Nauni population of B. coriacea, and it is the first report from the gut of scarabaeids. This is an opportunistic human pathogen but a useful endosymbiont in the grubs of B. coriacea. Bacillus thuringiensis as a biological agent, Staphylococcus cohnii, Ralstonia mannitolilytica and some Bacillus sp. were reported for the first time from B. coriacea grubs in India. The potent cellulose-degrading bacteria can be used in industries for decomposing agricultural waste, in pulp and paper industries and for biofuel production.
Heavy metal (HM) pollution has become a major environmental concern due to increased anthropogenic activities. The persistence and toxicity of HMs pose significant risks to ecosystems, biodiversity, and human health. This review highlights the pressing issue of HM contamination, its impact on ecosystems, and the potential risks of bio-magnification. Addressing these issues requires sustainable and cost-effective solutions. Among various remediation strategies, phytoremediation stands out as a promising green technology for mitigating environmental damage by using plants to extract or detoxify contaminants. A key challenge in phytoremediation, however, is the management of large volumes of contaminated biomass. This study explores the integration of phytoremediation with biofuel production, which not only addresses biomass management but also offers a sustainable solution within the framework of the circular economy. The dual role of specific plant species in both phytoremediation and biofuel production is evaluated, providing reduced environmental waste, lowering remediation costs, and promoting energy security. Future advancements in plant engineering, biotechnology, and process optimization hold the potential to enhance phytoremediation efficiency and biofuel yields. Expanding research into metal-tolerant, high-biomass crops can further improve scalability and economic feasibility. The review also critically assesses challenges such as the safe handling of contaminated biomass, sustainability concerns, and existing research gaps. By merging environmental remediation with bioenergy production, this interdisciplinary approach presents a viable pathway toward sustainable development.
Purpose of ReviewAn increase in the generation of waste within cities is unavoidable due to the increasing global population growth, particularly in urban areas. Municipal wastewater treatment plants (WWTPs) in these urban areas are being pushed to their design limits resulting in issues with WWTP residual management. This paper reviews potential applications of transitioning a municipal WWTP into an urban biorefinery for converting wastes into various value-added chemicals and energy.Recent FindingsPrimary WWTP-based residuals produced are waste-activated sludge, biosolids, grit, and effluent. These components are becoming viable feedstocks for producing many potential products and can be recovered for commercial purposes as opposed to simple disposal. Example products include chemicals, energy, and transportable biofuels. An advantage to biorefinery operations composed of WWTPs is that they provide greener solutions while posing little to no threat to the environment. There has also been an increasing interest in co-feedstocks to WWTPs, such as municipal solids, food wastes, agriculture wastes, and lignocellulosic biomass, which can enhance product yields while providing sustainable management solutions to these additional waste streams.SummaryMunicipal wastewater influents generated within the USA have a chemical energy potential of 1.3 MJ/person/day which represents about 4% of the total daily electricity consumed globally. The cost of waste management is expected to rise by 5.5% by 2027 which can be significantly lowered by having WWTPs integrated into biorefineries. This review found that there is great potential for converting WWTPs into true biorefineries that can effectively produce numerous value-added chemicals. Often, minor process changes can be applied which will yield the envisoned products. This paper provides the framework towards both commercialization opportunities and needed research.
Contrails and contrail-cirrus may be the largest source of radiative forcing (RF) attributable to aviation. Biomass-derived alternative jet fuels are a potentially major way to mitigate the climate impacts of aviation by reducing lifecycle CO2 emissions. Given the up to 90% reduction in soot emissions from paraffinic biofuels, the potential for a significant impact on contrail RF due to the reduction in contrail-forming ice nuclei (IN) remains an open question. We simulate contrail formation and evolution to quantify RF over the United States under different emissions scenarios. Replacing conventional jet fuels with paraffinic biofuels generates two competing effects. First, the higher water emissions index results in an increase in contrail occurrence (similar to +8%). On the other hand, these contrails are composed of larger diameter crystals (similar to +58%) at lower number concentrations (similar to -75%), reducing both contrail optical depth (similar to -29%) and albedo (similar to -32%). The net changes in contrail RF induced by switching to biofuels range from -4% to +18% among a range of assumed ice crystal habits (shapes). In comparison, cleaner burning engines (with no increase in water emissions index) result in changes to net contrail RF ranging between -13% and +5% depending on habit. Thus, we find that even 67% to 75% reductions in aircraft soot emissions are insufficient to substantially reduce warming from contrails, and that the use of biofuels may either increase or decrease contrail warming-contrary to previous expectations of a significant decrease in warming.
The ground and vertical profiles of particulate matter (PM) were mapped as part of a pilot study using a Tethered balloon within the lower troposphere (1000 m) during the foggy episodes in the winter season of 2015-16 in New Delhi, India. Measurements of black carbon (BC) aerosol and PM <2.5 and 10 mu m (PM2.5 &PM-10 respectively) concentrations and their associated particulate optical properties along with meteorological parameters were made. The mean concentrations of PM2.5, PM10, BC370 (nm), and BC880 nm were observed to be 146.8 +/- 42.1, 245.4 +/- 65.4, 30.3 +/- 122, and 24.1 +/- 103 mu g m(-3), respectively. The mean value of PM2.5 was similar to 12 times higher than the annual US-EPA air quality standard. The fraction of BC in PM2.5 that contributed to absorption in the shorter visible wavelengths (BC370 nm) was-21%. Compared to clear days, the ground level mass concentrations of PM2.5 and BC370 nm particles were substantially increased (59% and 24%, respectively) during the foggy episode. The aerosol light extinction coefficient (sigma(ext)) value was much higher (mean: 610 Mm(-1)) during the lower visibility (foggy) condition. Higher concentrations of PM2.5 (89 mu g m(-3)) and longer visible wavelength absorbing BC880 am (25.7 mu g m(-3)) particles were observed up to 200 m. The BC880 nm and PM2.5 aerosol concentrations near boundary layer (1 km) were significantly higher (similar to 1.9 and 12 mu g m(-3)), respectively. The BC (i.e BCtot) aerosol direct radiative forcing (DRF) values were estimated at the top of the atmosphere (TOA), surface (SFC), and atmosphere (ATM) and its resultant forcing were- 75.5 Wm(-2) at SFC indicating the cooling effect at the surface. A positive value (20.9 Wm(-2)) of BC aerosol DRF at TOA indicated the warming effect at the top of the atmosphere over the study region. The net DRF value due to BC aerosol was positive (96.4 Wm(-2)) indicating a net warming effect in the atmosphere. The contribution of fossil and biomass fuels to the observed BC aerosol DRF values was -78% and-22%, respectively. The higher mean atmospheric heating rate (2.71 K clay(-1)) by BC aerosol in the winter season would probably strengthen the temperature inversion leading to poor dispersion and affecting the formation of clouds. Serious detrimental impacts on regional climate due to the high concentrations of BC and PM (especially PM2.5) aerosol are likely based on this study and suggest the need for immediate, stringent measures to improve the regional air quality in the northern India. (C) 2016 Elsevier B.V. All rights reserved.
Black carbon (BC) aerosols are one of the most uncertain drivers of global climate change. The prevailing view is that BC mass concentrations are low in rural areas where industrialization and vehicular emissions are at a minimum. As part of a national research program called the Ganga Basin Ground Based Experiment-2014 under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) Phase-III of Ministry of Earth Sciences, Government of India, the continuous measurements of BC and particulate matter (PM) mass concentrations, were conducted in a rural environment in the highly-polluted Indo-Gangetic Plain region during 16th June to 15th August (monsoon period), 2014. The mean mass concentration of BC was 4.03 (+/- 0.85) mu g m(-3) with a daily variability between 2.4 and 5.64 mu g m(-3), however, the mean mass PM concentrations [near ultrafine (PM1.0), fine (PM2.5) and inhalable (PM1.0)] were 29.1(+/- 16.2), 34.7 (+/- 19.9) and 43.7 (+/- 283) mu g m(-3), respectively. The contribution of BC in PM1.0 was approximately 13%, which is one of the highest being recorded. Diurnally, the BC mass concentrations were highest (mean: 5.89 mu g m(-3)) between 20:00 to 22:00 local time (LT) due to the burning of biofuels/biomass such as wood, dung, straw and crop residue mixed with dung by the local residents for cooking purposes. The atmospheric direct radiative forcing values due to the composite and BC aerosols were determined to be +78.3, +44.9, and +45.0 W m(-2) and +42.2, +35.4 and +34.3 W m(-2) during the months ofJune, July and August, respectively. The corresponding atmospheric heating rates (AHR) for composite and BC aerosols were 2.21,1.26 and 1.26; and 1.19, 0.99 and 0.96 K day(-1) for the month ofJune, July and August, respectively, with a mean of 1.57 and 1.05 K day(-1) which was 33% lower AHR (BC) than for the composite particles during the study period. This high AHR underscores the importance of absorbing aerosols such as BC contributed by residential cooking using biofuels in India. Our study demonstrates the need for immediate, effective regulations and policies that mitigate the emission of BC particles from domestic cooking in rural areas of India. (C) 2016 Elsevier B.V. All rights reserved.
Climate change will alter ecosystem metabolism and may lead to a redistribution of vegetation and changes in fire regimes in Northern Eurasia over the 21st century. Land management decisions will interact with these climate-driven changes to reshape the region's landscape. Here we present an assessment of the potential consequences of climate change on land use and associated land carbon sink activity for Northern Eurasia in the context of climate-induced vegetation shifts. Under a `business-as-usual' scenario, climate-induced vegetation shifts allow expansion of areas devoted to food crop production (15%) and pastures (39%) over the 21st century. Under a climate stabilization scenario, climate-induced vegetation shifts permit expansion of areas devoted to cellulosic biofuel production (25%) and pastures (21%), but reduce the expansion of areas devoted to food crop production by 10%. In both climate scenarios, vegetation shifts further reduce the areas devoted to timber production by 6-8% over this same time period. Fire associated with climate-induced vegetation shifts causes the region to become more of a carbon source than if no vegetation shifts occur. Consideration of the interactions between climate-induced vegetation shifts and human activities through a modeling framework has provided clues to how humans may be able to adapt to a changing world and identified the trade-offs, including unintended consequences, associated with proposed climate/energy policies.
Black carbon (BC) is an important aerosol species because of its global and regional influence on radiative forcing and its local effects on the environment and human health. We have estimated the emissions of BC in China, where roughly one-fourth of global anthropogenic emissions is believed to originate. China's high rates of usage of coal and biofuels are primarily responsible for high BC emissions. This paper pays particular attention to the application of appropriate emission factors for China and the attenuation of these emissions where control devices are used. Nevertheless, because of the high degree of uncertainty associated with BC emission factors, we provide ranges of uncertainty for our emission estimates, which are approximately a factor of eight. In our central case, we calculate that BC emissions in China in 1995 were 1342 Gg, about 83% being generated by the residential combustion of coal and biofuels, We estimate that BC emissions could fall to 1224 Gg by 2020. This 9% decrease in BC emissions can be contrasted with the expected increase of 50% in energy use; the reduction will be obtained because of a transition to more advanced technology, including greater use of coal briquettes in place of raw coal in cities and towns. The increased use of diesel vehicles in the future will result in a greater share of the transport sector in total BC emissions. Spatially, BC emissions are predominantly distributed in an east-west swath across China's heartland, where the rural use of coal and biofuels for cooking and heating is widespread. This is in contrast Lo the emissions of most other anthropogenically derived air pollutants. which are closely tied to population and industrial centers. (C) 2001 Elsevier Science Ltd. All rights reserved.