共检索到 1

Amylase has numerous applications in the processing food sector, including brewing, animal feed, baking, fruit juice manufacturing, starch syrups, and starch liquefaction. Practical applications have been the primary focus of recent research on novel properties of bacterial alpha-amylases. Many amylolytic-active bacterial isolates were obtained from samples of organic-rich, salinity-rich soil. Morphological and 16S rRNA gene sequence studies clearly revealed that the organism belongs to Bacillus sp. and was named Bacillus cereus strain GL2 (PP463909.1 (When pH 6.0, 45 degrees C, and 12 hours of incubation were met the optimal growth conditions for the strain produced the highest amount of alpha-amylase activity. B. cereus strain GL2 alpha-amylase isoenzyme was purified to homogeneity using Sephacryl (TM) S-200 chromatography and ammonium sulfate precipitation. The electrophoretic molecular weight of B. cereus alpha-amylase was 58 kDa. The optimal pH and temperature for measuring alpha-amylase activity were 50 degrees C and 6.0, respectively. alpha-Amylase did not change at 50 degrees C. The purified enzyme improves bread texture by reducing stiffness while improving cohesiveness and flexibility. Purified alpha-amylase was added to the flour, which improved the rheological properties and overall bread quality. As a result, the alpha-amylase from B. cereus strain GL2 can be used to promote bread-making.

期刊论文 2025-03-01 DOI: 10.33073/pjm-2025-004 ISSN: 1733-1331
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页