Sustainable polymers have attracted interest due to their ability to biodegrade under specific conditions in soil, compost, and the marine environment; however, they have comparatively lower mechanical properties, limiting their widespread use. This study explores the effect of incorporating waste soy biomass into sustainable polymers (including biodegradable and biobased) on the thermal and mechanical properties of the resultant blends. The dispersion of the waste soy biomass in the polymer matrix is also investigated in relation to particle size (17 mu m vs. 1000 mu m). Fine waste soy biomass did not significantly affect the melting temperature of the polymers (polyhydroxyalkanoates, polybutylene adipate terephthalate, polybutylene adipate terephthalate/poly(lactic) acid, and biobased linear low-density polyethylene) used in this study, but their enthalpy of fusion decreased after soy was melt-blended with the polymers. The tensile modulus of the polymers filled with fine waste soy biomass powder (17 mu m) was enhanced when melt-blended as compared to unfilled polymers. Additionally, it was found that fine waste soy powder (17 mu m) increased the tensile modulus of the polymer blends without significantly affecting processability, while coarse waste soy meal (1000 mu m) generally reduced elongation at break due to poor dispersion and stress concentration; however, this effect was less pronounced in PHA blends, where improved compatibility was observed.
Protein-based foams are potential sustainable alternatives to petroleum-based polymer foams in e.g. single-use products. In this work, the biodegradation, bioassimilation, and recycling properties of glycerol-plasticized wheat gluten foams (using a foaming agent and gallic acid, citric acid, or genipin) were determined. The degradation was investigated at different pH levels in soil and high humidity. The fastest degradation occurred in an aqueous alkaline condition with complete degradation within 5 weeks. The foams exhibited excellent bioassimilation, comparable to or better than industrial fertilizers, particularly in promoting coriander plant growth. The additives provided specific effects: gallic acid offered antifungal properties, citric acid provided the fastest degradation at high pH, and genipin contributed with cross-linking. All three additives also contributed to antioxidant properties. Dense beta-sheet protein structures degraded more slowly than disordered/alpha-helix structures. WG foams showed only a small global warming potential and lower fossil carbon emissions than synthetic foams on a mass basis, as illustrated with a nitrile-butadiene rubber (NBR) foam. Unlike NBR, the protein foams could be recycled into films, offering an alternative to immediate composting.
Developing biobased thermoplastic polyurethane (TPU) from renewable biomass resources is becoming urgent due to resource scarcity and environmental protection requirements. Herein, a chain extender diol (VAN-OH) containing dynamic imine bonds was synthesized using renewable biomass resource vanillin (VAN), then combined with 1,4-butanediol (BDO) in various proportions, and reacted with poly(caprolactone diol) and 4,4 '-diphenylmethane diisocyanate to synthesize degradable biobased TPU (BTPUs) with excellent performance. Fourier transform infrared, 1H NMR, X-ray diffraction, DMA, thermogravimetric analysis, molecular weight, chemical degradation, and mechanical tests systematically investigated the relationships between the polymer chain structure and the performance of BTPUs. The experimental results demonstrated that the high regularity and strong polar bonds (imine and ether) of VAN-OH enhanced the interactions between macromolecular chains and improved the hydrogen bonding combination, crystallinity, and phase separation of BTPUs, thereby exerting significant contributions to their thermomechanical and degradable properties. BVTPU1 with a mole ratio of BDO/VAN-OH = 7.5:2.5 exhibited the best mechanical performance, degradation time was 37.5% shorter, and initial pyrolysis temperature increased by 13.8% compared to BTPU0 without VAN-OH. In addition, BTPUs have shown some biodegradability and environmental friendliness in soil burial experiments under natural conditions.
Bacterial poly-3-hydroxybutyrate is a thermoplastic biopolyester that is considered a potential alternative to traditional fossil-based plastics due to its rapid biodegradation performance in both soil and marine environments and its compostability. Due to problems in thermal and crystallization behaviors of the bacterial poly-3-hydroxybutyrate polymer, an improvement has been made in the cooling channel of the conventional fiber spinning process. Using an enhanced quench channel, named as a half tube on a conventional melt spinning line, melt spinning of the bacterial poly-3-hydroxybutyrate multifilament fibers is successfully carried out. The maximum crystallization temperature of polymers was taken into account while adjusting the quenching process. The study examined the impact of varying drawing ratios and the designed quenching apparatus on the thermal (differential scanning calorimetry), mechanical (tensile and drawing force tests), morphological, and crystal structure characteristics of fibers. The quenching apparatus has visibly created a homogeneous melt flow under the spinnerets. While it has a negative impact on fiber cross-sectional formation, raising the draw ratio greatly enhances mechanical properties.
Oxalate esters and isosorbide serve as intriguing polymer building blocks, as they can be sourced from renewable resources, such as CO2 and glucose, and the resulting polyesters offer outstanding material properties. However, the low reactivity of the secondary hydroxyl groups makes it difficult to generate high-molecular-weight polymers from isosorbide. Combining diaryl oxalates with isosorbide appears to be a promising approach to produce high-molecular-weight isosorbide-based polyoxalates (PISOX). This strategy seems to be scalable, has a short polymerization time (<5 h), and uniquely, there is no need for a catalyst. PISOX demonstrates outstanding thermal, mechanical, and barrier properties; its barrier to oxygen is 35 times better than PLA, it possesses mechanical properties comparable to high-performance thermoplastics, and the glass transition temperature of 167 degrees C can be modified by comonomer incorporation. What makes this high-performance material truly exceptional is that it decomposes into CO2 and biomass in just a few months in soil under home-composting conditions and it hydrolyzes without enzymes present in less than a year in 20 degrees C water. This unique combination of properties has the potential to be utilized in a range of applications, such as biomedical uses, water-resistant coatings, compostable plastic bags for gardening and agriculture, and packaging plastics with diminished environmental impact.
Compliant materials are indispensable for many emerging soft robotics applications. Hence, concerns regarding sustainability and end-of-life options for these materials are growing, given that they are predominantly petroleum-based and non-recyclable. Despite efforts to explore alternative bio-derived soft materials like gelatin, they frequently fall short in delivering the mechanical performance required for soft actuating systems. To address this issue, we reinforced a compliant and transparent gelatin-glycerol matrix with structure-retained delignified wood, resulting in a flexible and entirely biobased composite (DW-flex). This DW-flex composite exhibits highly anisotropic mechanical behavior, possessing higher strength and stiffness in the fiber direction and high deformability perpendicular to it. Implementing a distinct anisotropy in otherwise isotropic soft materials unlocks new possibilities for more complex movement patterns. To demonstrate the capability and potential of DW-flex, we built and modeled a fin ray-inspired gripper finger, which deforms based on a twist-bending-coupled motion that is tailorable by adjusting the fiber direction. Moreover, we designed a demonstrator for a proof-of-concept suitable for gripping a soft object with a complex shape, i.e., a strawberry. We show that this composite is entirely biodegradable in soil, enabling more sustainable approaches for soft actuators in robotics applications.
To address the growing and urgent need for quick and accurate food spoilage detection systems as well as to reduce food resource wastage, recent research has focused on intelligent bio-labels using pH indicators. Accordingly, we developed a dual-channel intelligent label with colorimetric and fluorescent capabilities using black lycium anthocyanin (BLA) and 9,10-bis(2,2-dipyridylvinyl) anthracene (DSA4P) as colorimetric and fluorescent indicators within a composite film consisting of chitosan (Cs), whey protein (Wp), and sodium tripolyphosphate (STPP). The addition of STPP as a cross-linking agent significantly improved the hydrophobicity, mechanical properties, and thermal stability of the Cs/Wp composite films under low pH conditions. After the incorporation of BLA and DSA4P, the resulting dual-channel intelligent label (Cs/Wp/STPP/BLA/DSA4P) exhibited superior hydrophobicity, as indicated by a water contact angle of 78.03(degrees). Additionally, it displayed enhanced mechanical properties, with a tensile strength (TS) of 3.04 MPa and an elongation at break (EAB) of 81.07 %, while maintaining a low transmittance of 28.48 % at 600 nm. After 25 days of burial in soil, the label was significantly degraded, which showcases its eco-friendly nature. Moreover, the label could visually detect color changes indicating volatile ammonia concentrations (25-25,000 ppm). The color of the label in daylight gradually shifted from brick-red to light-red, brownish-yellow, and finally light-green as the ammonia concentration increased. Correspondingly, its fluorescence transitioned from no fluorescence to green fluorescence with increasing ammonia concentration, gradually intensifying under 365-nm UV light. Furthermore, the label effectively monitored the freshness of shrimp stored at temperatures of 4 C-degrees, 25( degrees)C, and - 18(degrees) C. Thus, the label developed in this study exhibits significant potential for enhancing food safety monitoring.
Particulate matter (PM) pollution poses a significant threat to human health on a global scale. However, current conventional air filtration materials, made from nonbiodegradable petroleum-based components, contribute to resource consumption and waste emissions, and are unable to meet the public's demand for environmental protection and energy conservation. For the first time, we report environmentally friendly biobased biodegradable polybutyrolactam (also known as PA4) electrospun air filters with superior mechanical properties and high interception efficiency. Compared with the commercial particulate filtration efficiency of 95% polypropylene melt-blown nonwoven fabric (PFE95), the successfully prepared green biobased degradable PA4 electrospun microfiber membrane has a lighter texture (80%) with as high as 99.85% for PM 2.5 filtration performance. In addition, the PA4 electrospun microfiber membranes also have very stable outstanding mechanical properties especially on tensile strength (>= 4.25 MPa) and Young's modulus (>= 34.82 MPa) at the same time. The biodegradability of PA4 electrospun microfiber membranes in campus soil was investigated, and the weight loss was approximately 88% within 49 days. This would not only make it a promising candidate for green and pollution-free air filtration but also provide insights into the design and development of composite membranes for multifuntionalities for various applications.