Silicon monoxide (SiO) is highly attractive as an anode material for high-energy lithium-ion batteries (LIBs) due to its significantly higher specific capacity. However, its practical application is hindered by substantial volume expansion during cycling, which leads to material pulverization and an unstable solid electrolyte interphase (SEI) layer. Inspired by the natural root fixation in soil, we designed a root-like topological structure binder, cassava starch-citric acid (CS-CA), based on the synergistic action of covalent and hydrogen bonds. The abundant -OH and -COOH groups in CS-CA molecules effectively form hydrogen bonds with the -OH groups on the SiO surface, significantly enhancing the interfacial interaction between CS-CA and SiO. The root-like topological structure of CS-CA with a high tolerance alleviates the mechanical stress generated by the volume changes of SiO. More encouragingly, the hydrogen bond action among CS-CA molecules produces a self-healing effect, which is advantageous for repairing damaged electrodes and preserving their structural integrity. As such, the CS-CA/SiO electrode exhibits exceptional cycling performance (963.1 mA h g-1 after 400 cycles at 2 A g-1 ) and rate capability (558.9 mA h g-1 at 5 A g-1 ). This innovative, topologically interconnected, root-inspired binder will greatly advance the practical application of long-lasting micron-sized SiO anodes. (c) 2025 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
This study investigates the influence of wood pellet fly ash blended binder (WABB) on the mechanical properties of typical weathered granite soils (WS) under a field and laboratory tests. WABB, composed of 50 % wood pellet fly ash (WA), 30 % ground granulated blast furnace slag (GGBS), and 20% cement by dry mass, was applied at dosages of 200-400 kg/m3 to four soil columns were constructed at a field site deposited with WS. After 28 days, field tests, including coring, standard penetration tests (SPT), and permeability tests, revealed enhanced soil cementation and reduced permeability, indicating a denser soil matrix. Unconfined compressive tests (UCT) and free-free resonant column (FFRC) tests on field cores at 28 and 56 days, compared with laboratory specimens and previously published data, demonstrated strength gains 1.2-2.1 times higher due to field-induced stress. The presence of clay minerals influenced the WABB's interaction and microstructure development. Correlations between seismic waves, small-strain moduli, and strength were developed to monitor in-situ static and dynamic stiffness gain of WABB-stabilized weathered granite soils.
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need is constantly growing. Biochar, the porous carbon-based lightweight product, often ends up as a soil fertilizer. However, it can be applied in other industrial sectors, e.g., in plastics production or in modifying cementitious materials intended for construction needs. This work dealt with the application of small amounts of softwood-based biochar up to 2.0 wt.% on hydration kinetics and a wide range of physical and mechanical properties, such as water transport characteristics and flexural and compressive strengths of modified cement pastes. In the comparison with reference specimens, the biochar incorporation into cement pastes brought benefits like the reduction of open porosity, improvement of strength properties, and decreased capillary water absorption of 7-day and 28-day-cured cement pastes. Moreover, biochar-dosed cement pastes showed an increase in heat evolution during the hydration process, accompanied by higher consumption of clinker minerals. Considering all examined characteristics, the optimal dosage of softwood-derived biochar of 1.0 wt.% of Portland cement can be recommended.
High-plasticity soils such as alluvial clay deform easily under heavy loads due to their strong plastic behavior. The tendency of these soils to expand and contract can cause deformation and cracking in structures, posing challenges in construction. To address these challenges, it's essential to improve these soils to enhance their strength and reduce plasticity before construction. Therefore, this study aims to evaluate the applicability of marble dust as a sustainable alternative to Portland cement in ground improvement applications, specifically to improve the behavior of alluvial clay. The performance of marble dust, Portland cement, and alluvial clay mixtures was evaluated using unconfined compressive strength (UCS), shear wave velocity, and mass loss due to weathering. The study tested three Portland cement contents (7, 10, and 13 %), two dry density (1.6 and 1.8 g/ cm3), and two marble dust contents (0, 10 and 20 %) across three curing ages (7, 28, and 60 days). Micro- structural analysis was performed using SEM. Results indicated a slight decrease in 7-day strength (up to 8.3 %) with 10 % marble dust replacement due to minimal pozzolanic activity, while 28-day strength loss was less significant. On the other hand, the 60-day strength increased up to 20 % upon replacing 10 % of cement with marble dust. The marble dust addition also increased the shear modulus of the soil by up to 9 % when compared with cement only. The adjusted porosity index of 0.32 correlated unconfined compressive strength (qu), initial shear modulus (G0), and accumulated loss of mass (ALM) across varying densities and blend proportions. ALM increased linearly with wet-dry cycles, with higher compaction and binder content reducing mass loss per cycle. More marble dust, however, led to greater mass loss at both curing ages, attributed to reduced cement content.
Recovery of field samples provides unique information about the strength and the long-term functionality of deep stabilized soil in actual transportation infrastructures. This paper presents the results of uniaxial compressive tests for the stabilized field samples of two railway sites and one street site located in Finland. Based on the research findings, there is considerable variation in the shear strength of the field samples, with coefficients of variation (COV) ranging from 0.12 to 0.61. However, the average strengths across all sites achieved their target values set during design. The results demonstrate a significant increase in strength over time, especially at the older research sites. In a railway site where deep stabilization was performed 3.5 years ago, the average shear strength of the stabilization was 797 kPa, which is more than seven times greater than the target strength for the stabilized columns. The relationships between shear strength and deformation ratios for the columns and soil surrounding the columns exceed the assumed ratio values presented in the guidelines of Finnish Transport Infrastructure Agency (FTIA), which present a value of less than 20 for completed stabilization. Based on the results of all sites, the deformation ratio between columns and clay was found to be as much as 101. This result implies that the stress concentrates more on the columns than assumed in the FTIA's guidelines. Nevertheless, the structures have performed well without any visible differences in settlement or other damages.
Black cotton (BC) soil poses threats to build structures owing seasonal volumetric changes. The production of fly ash (FA) and bagasse ash (BA) increasing abundantly, and their improper disposal poses detrimental effects on the environment and human health. This research aims to develop sustainable, novel, optimum binary blend by using FA and BA to improve the strength characteristics of the BC soil after curing periods of 7, 14, and 28 days. BA was mixed in different ratios by dry weight of FA to obtain the optimum binder based on maximum UCS. The optimum binder comprising of 80:20, mix by dry weight of BC soil in varying proportions. The effects of mix show significant changes in the geotechnical and mechanical properties of BC soil. Research shows that swelling features reduces alters into non-swelling soil. The soil transitions from a plastic to a brittle state. The results revealed that MDD, UCS, CBR and STS increases significantly with curing periods. The mineralogical and microstructural test carried out using XRD and SEM, which supports the creation of cementitious complex and development of a dense matrix. The results state that utilized binder to stabilize BC soil is suitable for civil infrastructure specially pavement and foundations.
Rammed earth (RE) construction has gained increasing interest in recent years owing to sustainability demands in the construction industry and the advancement of digital fabrication techniques. However, the domination of the cement-stabilized RE material in the RE industry poses environmental concerns due to the substantial carbon emissions associated with cement production. In this study, bio-based alternatives to cement-stabilized RE are investigated through evaluating xanthan gum (XG) and animal glue (AG) as bio-binders for RE stabilization. Unconfined compressive strength tests are conducted on XG and AG-stabilized specimens for mechanical performance evaluation, and unstabilized RE samples as baseline for comparison. Results show that AG-stabilized specimens demonstrate a 294% strength improvement over unstabilized RE, reaching 6.86 MPa at 28 days, while XG-stabilized specimens achieve a 221% improvement. XG-stabilized specimens, however, exhibit susceptibility to microbial proliferation. The findings from this research demonstrate that XG and AG have the potential to be viable alternatives to mainstream RE construction methods, paving the way for advancing environmentally friendly RE construction.
To achieve environmental and economic goals in ground improvement, a one-part geopolymer (OPG), synthesized from binary precursors (fly ash [FA] and granulated blast furnace slag [GGBFS]) and a solid activator (solid sodium silicate [NS]), was used to replace ordinary Portland cement (OPC) for stabilizing high-water-content soft clay. The effects of different initial water content (50%, 80%, 100%, and 120%) and various OPG binder content (10%, 20%, 30%, and 40%) on the strength development of the OPG-stabilized soft clay were investigated through unconfined compressive strength (UCS) and unconsolidated undrained (UU) triaxial tests. Additionally, the microstructure evolution and the distribution of pores in the OPG-stabilized soft clay were examined by the utilization of mercury intrusion porosimetry (MIP) and scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) techniques, respectively. The life cycle assessment (LCA) methodology was then used to analyze the environmental and economic advantages of employing an OPG binder for soil stabilization. It was revealed that the optimal content of OPG binder was contingent upon the water content of soft clay, with variations in requirements for strength development. Specifically, for soft clay not demanding early strength, a maximum binder content of 20% is proposed. Conversely, for soft clay that necessitated rapid strength gain, the OPG binder content escalated with increasing water content of the soft clay, in which soft clays with different water contents had corresponding required amounts of OPG binder. For soil with water content ranging from 50% to 80%, the recommended OPG binder content is 20%. While for soil with 100% and 120% water content, the designed OPG binder content is suggested to be 30% and 40%, respectively. The environmental assessment demonstrated that the utilization of OPG as a binder for the stabilization of soft clay reduces costs and carbon emissions in comparison to OPC. The present study provides substantial theoretical validation for the utilization of OPG as a novel binder to stabilize soft clay with elevated water content, which holds promise as an eco-friendly and cost-effective solution in ground improvement.
Cemented paste backfill (CPB) is a cemented void filling method gaining popularity over traditional hydraulic or rockfill methods. As mining depth increases, CPB-filled stopes are subjected to higher confining pressures. Due to the soil triaxial apparatus limitations, as the conventional method of triaxial testing on CPB, no confining pressures higher than 5 MPa can be applied to CPB over a range of curing time. This lack of data introduces uncertainty in predicting CPB behavior, potentially leading to an overestimation of the required strength. To address this, this study introduces a new testing method that allows for higher confinement beyond traditional limitations by modifying the Hoek triaxial cell to accommodate low-strength materials. This study then investigates the coupled influence of confining pressure and curing time (hydration) on CPB characteristics, specifically examining the impacts of different curing times and confining pressures on the mechanical and rheological properties of CPB. A total of 75 triaxial tests were conducted using 42 mm cylinder shape samples at five various curing times from 7 to 96 days, and applied at low and high confinement condition levels (0.5 to 30 MPa). The results reveal that hydration and confinement positively impact the CPB strength. The modified structured Cam-Clay model was selected to predict the behavior, and its yield surface was updated using the experimental results. The proposed yield model can be utilized to describe CPB material subjected to various curing and pressure conditions underground.
Various industrial waste binders (IWBs) are being recycled in soil stabilization to save cement consumption. However, the coupled effects brought out by combined IWBs on stabilized soils are still unclear. IWBs are categorized into two typical categories (IWB-A and IWB-B) referring to their chemical role in this study. The alkali-source effect, pore-filling effect and cementation damage effect by IWBs in soil stabilization are explored. A series of mechanical and microscopic tests is performed on stabilized clay with different proportions of IWB-A and IWB-B. Moreover, initial water contents and cement contents of cement-stabilized clay are varied to examine the evolution of coupled effect with void ratio and cementation level. The results indicate that the alkali-source effect strengthens the cementation bonds and increases the early strength by 0.5-1.3 times, whereas the pore-filling effect improves the microfabric especially for the specimen with a large void ratio. The alkali-source effect increases soil cohesion cuat the pre-yield stage, and the pore-filling effect increases frictional angle 4uat the post-yield stage. The cementation damage effect is remarkable at a low void ratio, which may result in many extruded pores among soil aggregates. The strength evolution with IWB proportions can be well stimulated by considering the coupled alkali-source effect, pore-filling effect and cementation damage effect. The optimal proportion of IWBs corresponds to an optimal combination of coupled effect. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).