Glacier shrinkage, a notable consequence of climate change, is expected to intensify, particularly in high-elevation areas. While plant diversity and soil microbial communities have been studied, research on soil organic matter (SOM) and soil protein function dynamics in glacier forefields is limited. This limited understanding, especially regarding the link between microbial protein functions and biogeochemical functions, hampers our knowledge of soil-ecosystem processes along chronosequences. This study aims to elucidate the mechanistic relationships among soil bacterial protein functions, SOM decomposition, and environmental factors such as plant density and soil pH to advance understanding of the processes driving ecosystem succession in glacier forefields over time. Proteomic analysis showed that as ecosystems matured, the dominant protein functions transition from primarily managing cellular and physiological processes (biological controllers) to orchestrating broader ecological processes (ecosystem regulators) and increasingly include proteins involved in the degradation and utilization of OM. This shift was driven by plant density and pH, leading to increased ecosystem complexity and stability. Our confirmatory path analysis findings indicate that plant density is the main driver of soil process evolution, with plant colonization directly affecting pH, which in turn influenced nutrient metabolizing protein abundance, and SOM decomposition rate. Nutrient availability was primarily influenced by plant density, nutrient metabolizing proteins, and SOM decomposition, with SOM decomposition increasing with site age. These results underscore the critical role of plant colonization and pH in guiding soil ecosystem trajectories, revealing complex mechanisms and emphasizing the need for ongoing research to understand long-term ecosystem resilience and carbon sequestration.
Arctic ecosystems are highly vulnerable to ongoing and projected climate change. Rapid warming and growing anthropogenic pressure are driving a profound transformation of these regions, increasingly positioning the Arctic as a persistent, globally significant source of greenhouse gases. In the Russian Arctic-a critical zone for national economic growth and transport infrastructure-intensive development is replacing natural ecosystems with anthropogenically modified ones. In this context, Nature-based Solutions (NbS) represent a vital tool for climate change adaptation and mitigation. However, many NbS successfully applied globally have limited applicability in the Arctic due to its inaccessibility, short growing season, low temperatures, and permafrost. This review demonstrates the potential for adapting existing NbS and developing new ones tailored to the Arctic's environmental and socioeconomic conditions. We analyze five key NbS pathways: forest management, sustainable grazing, rewilding, wetland conservation, and ecosystem restoration. Our findings indicate that protective and restorative measures are the most promising; these can deliver measurable benefits for both climate, biodiversity and traditional land-use. Combining NbS with biodiversity offset mechanisms appears optimal for preserving ecosystems while enhancing carbon sequestration in biomass and soil organic matter and reducing soil emissions. The study identifies critical knowledge gaps and proposes priority research areas to advance Arctic-specific NbS, emphasizing the need for multidisciplinary carbon cycle studies, integrated field and remote sensing data, and predictive modeling under various land-use scenarios.
A realistic prediction of excess pore water pressure generation and the onset of liquefaction during earthquakes are crucial when performing effective seismic site response analysis. In the present research, the validation of two pore water pressure (PWP) models, namely energy-based GMP and strain-based VD models implemented in a one-dimensional site response analysis code, was conducted by comparing numerical predictions with highquality seismic centrifuge test measurements. A careful discussion on the selection of input soil parameters for numerical simulations was made with particular emphasis on the PWP model parameter calibration which was based on undrained stress-controlled/strain-controlled cyclic simple shear (CSS) tests carried out on the same sand used in the centrifuge test. The results of the study reveal that the energy-based model predicts at all depths peak pore water pressures and dissipation behaviour in a satisfactory way with respect to experimental measurements, whereas the strain-based model underestimates the PWP measurements at low depths. Further comparisons of the acceleration response spectra illustrate that both the strain- and energy-based models provide higher computed spectral accelerations near the ground surface compared with the recorded ones, whereas the agreement is reasonable at middle depth.
Permafrost thaw and thermokarst development pose urgent challenges to Arctic communities, threatening infrastructure and essential services. This study examines the reciprocal impacts of permafrost degradation and infrastructure in Point Lay (Kali), Alaska, drawing on field data from similar to 60 boreholes, measured and modeled ground temperature records, remote sensing analysis, and community interviews. Field campaigns from 2022-2024 reveal widespread thermokarst development and ground subsidence driven by the thaw of ice-rich permafrost. Borehole analysis confirms excess-ice contents averaging similar to 40%, with syngenetic ice wedges extending over 12 m deep. Measured and modeled ground temperature data indicate a warming trend, with increasing mean annual ground temperatures and active layer thickness (ALT). Since 1949, modeled ALTs have generally deepened, with a marked shift toward consistently thicker ALTs in the 21st century. Remote sensing shows ice wedge thermokarst expanded from 60% in developed areas by 2019, with thaw rates increasing tenfold between 1974 and 2019. In contrast, adjacent, undisturbed tundra exhibited more consistent thermokarst expansion (similar to 0.2% yr(-1)), underscoring the amplifying role of infrastructure, surface disturbance, and climate change. Community interviews reveal the lived consequences of permafrost degradation, including structural damage to homes, failing utilities, and growing dependence on alternative water and wastewater strategies. Engineering recommendations include deeper pile foundations, targeted ice wedge stabilization, aboveground utilities, enhanced snow management strategies, and improved drainage to mitigate ongoing infrastructure issues. As climate change accelerates permafrost thaw across the Arctic, this study highlights the need for integrated, community-driven adaptation strategies that blend geocryological research, engineering solutions, and local and Indigenous knowledge.
Seismic risk assessment of code-noncompliant reinforced concrete (RC) frames faces significant challenges due to structural heterogeneity and the complex interplay of site-specific hazard conditions. This study aims to introduce a novel framework that integrates three key concepts specifically targeting these challenges. Central to the methodology are fragility fuses, which employ a triplet of curves-lower bound, median, and upper bound-to rigorously quantify within-class variability in seismic performance, offering a more nuanced representation of code-noncompliant building behavior compared to conventional single-curve approaches. Complementing this, spectrum-consistent transformations dynamically adjust fragility curves to account for regional spectral shapes and soil categories, ensuring site-specific accuracy by reconciling hazard intensity with local geotechnical conditions. Further enhancing precision, the framework adopts a nonlinear hazard model that captures the curvature of hazard curves in log-log space, overcoming the oversimplifications of linear approximations and significantly improving risk estimates for rare, high-intensity events. Applied to four RC frame typologies (2-5 stories) with diverse geometries and material properties, the framework demonstrates a 15-40 % reduction in risk estimation errors through nonlinear hazard modeling, while spectrum-consistent adjustments show up to 30 % variability in exceedance probabilities across soil classes. Fragility fuses further highlight the impact of structural heterogeneity, with older, non-ductile frames exhibiting 25 % wider confidence intervals in performance. Finally, risk maps are presented for the four frame typologies, making use of non-linear hazard curves and spectrumconsistent fragility fuses accounting for both local effects and within-typology variability.
Lunar soil, as an in-situ resource, holds significant potential for constructing bases and habitats on the Moon. However, such constructions face challenges including limited mechanical strength and extreme temperature fluctuations ranging from -170 degrees C to +133 degrees C between lunar day and night. In this study, we developed a 3D-printed geopolymer derived from lunar regolith simulant with an optimized zig-zag structure, exhibiting exceptional mechanical performance and thermal stability. The designed structure achieved remarkable damage tolerance, with a compressive strength exceeding 12.6 MPa at similar to 80 vol% porosity and a fracture strain of 3.8 %. Finite element method (FEM) simulations revealed that the triangular frame and wavy interlayers enhanced both stiffness and toughness. Additionally, by incorporating strategically placed holes and extending the thermal diffusion path, we significantly improved the thermal insulation of the structure, achieving an ultralow thermal conductivity of 0.24 W/(m K). Furthermore, an iron-free geopolymer coating reduced overheating under sunlight by 51.5 degrees C, underscoring the material's potential for space applications.
The present paper sets out a comparative analysis of carbon emission and economic benefit of different performance gradients solid waste based solidification material (SSM). The macro properties of SSM were the focus of systematic study, with the aim of gaining deeper insight into the response of the SSM to conditions such as freeze-thaw cycles, seawater erosion, dry-wet cycles and dry shrinkage. In order to facilitate this study, a range of analytical techniques were employed, including scanning electron microscopy (SEM), X-ray diffraction (XRD) and mercury intrusion porosimetry (MIP). The findings indicate that, in comparison with cement, the carbon emissions of SSM (A1) are diminished by 77.7 %, amounting to 190 kg/t, the carbon-performance ratio (24.4 kg/ MPa), the cost-performance ratio (32.1RMB/MPa) and the carbon-cost ratio (0.76kg/RMB) are reduced by 86 %, 56 % and 68 % respectively. SSM demonstrated better performance in terms of freeze-thaw resistance, seawater erosion resistance and dry-wet resistance when compared to cement. The dry shrinkage value of SSM solidified soil was reduced by approximately 35 % at 40 days compared to cement solidified soil, due to compensatory shrinkage and a reduction in pores. In contrast to the relatively minor impact of seawater erosion and the moderate effects of the wet-dry cycle, freeze-thaw cycles have been shown to cause the most severe structural damage to the micro-structure of solidified soil. The conduction of durability tests resulted in increased porosity and the most probable aperture. The increase in pores and micro-structure leads to the attenuation of macroscopic mechanical properties of SSM solidified soil. The engineering application verified that with the content of SSM of 50 kg/m, 4.5 % and 3 %, the strength, bearing capacity and bending value of SSM modified soil were 1.9 MPa, 180 kPa and 158, respectively in deep mixing piles, shallow in-situ solidification, and roadbed modified soil field.
In situ resource utilization of lunar regolith provides a cost-effective way to construct the lunar base. The melting and solidifying of lunar soil, especially under the vacuum environment on the Moon, are the fundamentals to achieve this. In this paper, lunar regolith simulant was melted and solidified at different temperatures under a vacuum, and the solidified samples' morphology, structure, and mechanical properties were studied. The results indicated that the density, compressive strength, and Vickers hardness of the solidified samples increased with increasing melting temperature. Notably, the sample solidified at 1400 degrees C showed excellent nanohardness and thermal conductivity originating from the denser atomic structure. It was also observed that the melt migrated upward along the container wall under the vacuum and formed a coating layer on the substrate caused by the Marangoni effect. The above results proved the feasibility of employing the solidified lunar regolith as a primary building material for lunar base construction.
This study presents a novel seismic control system, the Mega-Sub Controlled Structure System (MSCSS), to address vibration control challenges in tall and super-tall buildings under intense seismic excitations. The proposed hybrid VD-TFPB-controlled MSCSS integrates Triple Friction Pendulum Bearings (TFPBs) as base isolators with Viscous Dampers (VDs) between the mega frame and the vibration control substructure, enhancing damping and seismic performance. MSCSS without VD and MSCSS with VD models are established and verified using an existing benchmark. The hybrid VD-TFPB-controlled MSCSS is then developed to evaluate its vibration control response while considering soil-structure interaction (SSI). Numerical analyses with earthquake records demonstrate its superior performance compared to MSCSS without and with VD systems. Nonlinear dynamic analyses reveal that the hybrid system significantly improves vibration control. However, under SSI, increased structural flexibility leads to higher frame stress and more plastic hinges, particularly on soft soil, which amplifies vibrations. Despite these challenges, the hybrid VD-TFPB-controlled MSCSS effectively enhances seismic resilience, offering a robust solution for tall buildings.
A novel iron-based phosphate cement (IPC), derived from iron-rich smelting slag (ISS), was developed as a sustainable and efficient binder for the stabilization/solidification of trivalent chromium (Cr3+). The mechanical properties, hydration behavior, microstructure, leaching toxicity, chromium chemical forms, and environmental safety of chromium-stabilized iron phosphate cement (CIPC) were thoroughly evaluated. The results showed that, with a mass ratio of ISS to ammonium dihydrogen phosphate (ADP) of 2.0, and even with the addition of 20 % chromium nitrate nonahydrate (CN), the compressive strength of CIPC reached 4.2 MPa after curing for 28 d. Furthermore, chromium leaching was well below 1 mg/L, significantly lower than the GB 5085.3-2007 standard limit of 15 mg/L, demonstrating the effective encapsulation of Cr3+ due to IPC's high early strength. In the IPC system, Cr3+ was primarily stabilized by forming CrPO4 and CrxFe1-x(OH)3 co-precipitates, which were further solidified through the physical encapsulation of IPC hydration products, such as (NH4)2Fe(PO3OH)2 center dot 4H2O, (NH4) (Mg,Ca)PO4 center dot H2O, and FePO4. This process resulted in a solidification efficiency of up to 99 %. BCR analysis confirmed that more than 98 % of the chromium in the CIPC remained in a stable residual form. Finally, the ecological risk index (PERT) was found to be 23.52, far below the safety threshold of 150, indicating the solidified material's long-term environmental safety. This study provides an innovative approach for the reutilization of ISS while effectively stabilizing/solidifying chromium.