共检索到 44

To address the engineering problems of road subsidence and subgrade instability in aeolian soil under traffic loads, the aeolian soil was improved with rubber particles and cement. Uniaxial compression tests and Digital speckle correlation method (DSCM) were conducted on rubber particles-cement improved soil (RP-CIS) with different mixing ratios using the WDW-100 universal testing machine. The microcrack and force chain evolution in samples were analysed using PFC2D. The results showed that: (1) The incorporation of rubber particles and cement enhanced the strength of the samples. When the rubber particles content was 1% and the cement content was 5%, the uniaxial compressive strength of the RP-CIS reached its maximum. Based on the experimental results, a power function model was established to predict the uniaxial compressive strength of RP-CIS; (2) The deformation of the samples remains stable during the compaction stage, with cracks gradually developing and penetrating, eventually entering the shear failure stage; (3) The crack and failure modes simulated by PFC2D are consistent with the DSCM test. The development of microcracks and the contact force between particles during the loading are described from a microscopic perspective. The research findings provide scientific support for subgrade soil improvement and disaster prevention in subgrade engineering.

期刊论文 2025-12-31 DOI: 10.1080/10298436.2025.2496332 ISSN: 1029-8436

In the construction of cold region engineering and artificial freezing engineering, soil-rock mixture (SRM) is a frequently encountered geomaterial. Understanding the mechanical properties of frozen SRM is crucial for ensuring construction safety. In this paper, frozen SRM is considered as a multiphase material consisting of a soil matrix and rock. By employing a single-variable approach, the relationship between UCS and rock content was revealed, and the effects of rock content on the stress-strain curve shape and failure mode were analyzed. The test results indicate that rock content significantly influences the stress-strain curve and failure mode of SRM. The specimen preparation with different rock content is unified using a given relative compactness. The uniaxial compressive strength (UCS) of the frozen specimens increases firstly and then decreases as rock content increases, which is unaffected by temperature or rock size. The classic quadratic polynomial is suggested to describe the variation rule. The failure modes of specimens with low, medium and high rock content correspond to shear failure, bulge failure and splitting failures, respectively, which transmits from shear failure to splitting failure as the rock content increases.

期刊论文 2025-06-07 DOI: 10.1007/s11440-025-02672-1 ISSN: 1861-1125

Understanding the temperature-dependent behavior of sands is essential for geotechnical engineering applications, especially in environments with long-term temperature variations. This study investigates the effects of temperature (T) on the shear strength and creep deformation (Delta epsilon CP) of KMUTT and Hostun sands through a series of consolidated drained triaxial compression (CDTC) tests. Monotonic loading (ML) and sustained loading (SL) schemes were applied to evaluate shear strength and creep behavior under various stress levels (SL) and temperatures. The temperature effect parameter (Af) was introduced to quantify the reduction in shear strength at elevated T relative to a reference temperature (T0 = 30 degrees C). Experimental results show that shear strength decreases as temperature increases, with Hostun sand being more temperature-sensitive than KMUTT sand. Under SL, significant Delta epsilon CP was observed, increasing with both SL and T, while resumption of shearing after SL did not affect peak shear strength. A hyperbolic empirical equation was developed to predict Delta epsilon CP for a given creep duration (Delta tCP), SL, and T, incorporating temperature effects via Af. The model was validated with experimental results and showed strong predictive capability, especially during the primary creep stage. However, discrepancies appeared at high SL, where secondary creep effects became more pronounced. The proposed model offers a practical framework for predicting long-term creep deformation in sands under temperature variations, enhancing geotechnical design in thermally influenced environments.

期刊论文 2025-06-01 DOI: 10.1007/s10706-025-03198-9 ISSN: 0960-3182

This study investigated the hydraulic and mechanical behaviors of unsaturated coarse-grained railway embankment fill materials (CREFMs) using a novel unsaturated large-scale triaxial apparatus equipped with the axis translation technique (ATT). Comprehensive soil-water retention and constant-suction triaxial compression tests were conducted to evaluate the effects of initial void ratio, matric suction, and confining pressure on the properties of CREFMs. Key findings reveal a primary suction range of 0-100 kPa characterized by hysteresis, which intensifies with decreasing density. Notably, the air entry value and residual suction are influenced by void ratio, with higher void ratios leading to decreased air entry values and residual suctions, underscoring the critical role of void ratio in hydraulic behavior. Additionally, the critical state line (CSL) in the bi-logarithmic space of void ratio and mean effective stress shifts towards higher void ratios with increasing matric suction, significantly affecting dilatancy and critical states. Furthermore, the study demonstrated that the mobilized friction angle and modulus properties depend on confining pressure and matric suction. A novel modified dilatancy equation was proposed, which enhances the predictability of CREFMs' responses under variable loading, particularly at high stress ratios defined by the deviatoric stress over the mean effective stress. This research advances the understanding of CREFMs' performance, especially under fluctuating environmental conditions that alter suction levels. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

期刊论文 2025-05-01 DOI: 10.1016/j.jrmge.2025.03.016 ISSN: 1674-7755

The study of the compression characteristics of loess in seasonal regions involves analyzing the mechanical properties and mesoscale damage evolution of intact loess subjected to dry-wet freeze-thaw cycles. This study meticulously examines the evolution of the stress-strain curve at the macroscale and the pore structure at the mesoscale of loess by consolidation and drainage triaxial shear tests, as well as nuclear magnetic resonance (NMR), under varying numbers of dry-wet freeze-thaw cycles. Then, utilizing the Duncan-Chang model (D-C), the damage model for intact loess is derived based on the principles of equivalent strain and Weibull distribution, with testing to verify its applicability. The results indicate that the stress-strain curve of undisturbed loess exhibits significant strain softening during the initial stage of the freeze-thaw dry-wet cycle. As the number of cycles increases, the degree of strain softening weakens and gradually exhibits a strain-hardening morphology; the volume strain also changes from dilatancy to shear contraction. According to the internal pore test data analysis, the undisturbed loess contributes two components to shear strength: cementation and friction during the shear process. The cementation component of the aggregate is destroyed after stress application, resulting in a gradual enlargement of the pore area, evidenced by the change from tiny pores into larger- and medium-sized pores. After 10 cycles, the internal pore area of the sample expands by nearly 35%, indicating that the localized damage caused by the dry-wet freeze-thaw cycle controls the macroscopic mechanical properties. Finally, a damage constitutive model is developed based on the experimental phenomena and mechanism analysis, and the model's validity is verified by comparing the experimental data with theoretical predictions.

期刊论文 2025-04-29 DOI: 10.3390/w17091328

The shape of particles significantly influences their mechanical properties, making accurate shape modeling crucial in numerical simulations. This paper proposes a framework for generating particles by applying improved spherical harmonic reconstructions to convex hull surfaces. The framework integrates mesh refinement tech- niques to enhance mesh resolution, enabling the generation of finer surface details than 3D laser scanning. Three parameters are introduced: Delta K1, which controls roundness; Delta K2, which governs roughness; and Rd, which represents the boundary between roundness and roughness in spherical harmonic reconstructions. Introducing these parameters not only allows independent control over the three levels of shape (form, roundness, and roughness) but also enhances the flexibility of the method, enabling the generation of various particle shapes. Granular assemblies with varying roundness and roughness distributions are generated and applied in discrete element method (DEM) simulations of triaxial shear. The results show that roundness is negatively correlated with the peak friction angle, while roughness is positively correlated. The proposed method enhances the ability to generate complex particle shapes, offering a practical tool for modeling and simulating granular materials.

期刊论文 2025-04-15 DOI: 10.1016/j.powtec.2025.120755 ISSN: 0032-5910

Weathered residual soil of granite (WRSG) is the predominant type of excavated soil in southern China. This study explores the high-quality utilisation potential of WRSG by mixing it with a small amount of cement and preloading it within steel tubes to create preloaded-cement-soil filled steel tubular (PCSFST) columns. The research investigates the relaxation behaviour and axial compression performance of PCSFST columns through experiments, focusing on the influence of preloading indicator, cement content ratio, and water-to-solid rat io on their axial compression behaviour. The experimental results showed that an increase in the preloading indicator significantly enhanced the axial bearing capacity of the PCSFST column. Specifically, when the preloading indicator increased from 30 % to 90 %, the axial bearing capacity increased by 22.7 %. Although the increase from 6 % to 12 % in the cement content ratio significantly improved the unconfined compressive strength (UCS) of the cement-soil core, the corresponding reduction in the confining effect only resulted in a 3.2 % increase in the axial bearing capacity, indicating a limited benefit. A moderate increase in the water-to-solid ratio significantly boosted the UCS of the cement-soil core, which in turn, enhanced the axial bearing capacity of the PCSFST column. After the preloading load was released, the cement-soil core exhibited longitudinal rebound deformation, which significantly reduced the confining effect provided by the steel tube. Nevertheless, the contribution of the confining effect to the axial bearing capacity can reach as high as 37 %, partially compensating for the relatively low UCS of the cement-soil core. Finally, based on the experimental results, a formula was proposed to predict the axial bearing capacity of PCSFST columns, which demonstrated high prediction accuracy.

期刊论文 2025-04-15 DOI: 10.1016/j.engstruct.2025.119846 ISSN: 0141-0296

The granular and natural characteristics of soil introduce size effects to its deformation and strength properties. Therefore, investigating the phenomenon of strain localisation in soil requires a multi-scale characterisation. This study examined the intrinsic scale patterns in samples with different sizes of reinforcing particles through triaxial compression tests. Additionally, the formation mechanism of microscopic shear bands was investigated using numerical simulation methods. Drawing from the soil cell model theory, the average strain energy release coefficient was introduced to validate the transformation of the overall strain energy of the specimen after reaching the peak stress. This reflects the progressive initiation and competitive process of multiple bands. The results indicate that samples with different sizes and types of reinforcing particles exhibit various failure patterns, including single-type, 'x'-shaped, 'v'-shaped, parallel and others. The soil exhibits size effects, with the ratio of intrinsic scale to particle size decreasing as the size of reinforcing particles increases. Prior to the stress peak, non-elastic dissipation energy begins to increase, indicating the initiation of plastic deformation in the soil. Localised strain zones are activated, and after the peak, there is a sharp increase in stress within the shear bands, accompanied by rebound outside the band.

期刊论文 2025-04-04 DOI: 10.1080/19648189.2024.2423878 ISSN: 1964-8189

The artificial ground freezing (AGF) method is a frequently-used reinforcement method for underground engineering that has a good effect on supporting and water-sealing. When employing the AGF method, the mesoscopic damage reduces the strength of the frozen sandy gravel and consequently affects the bearing capacity of the frozen curtain. However, a few studies have been conducted on the mesoscopic damage of artificial frozen sandy gravel, which differs from fine-grained soil due to its larger gravel size. Therefore, based on triaxial compression tests and CT scanning tests, this paper investigates both the mesoscopic damage mechanism and variations in artificial frozen sandy gravels. The findings indicate that there are contact pressures between gravel tips within the frozen sandy gravel, with damage primarily concentrated around these gravels during incompatible deformation within a four-phase medium consisting of ice, water, soil, and gravel. Furthermore, numerical simulation validates that failure typically initiates at delicate contact surfaces between gravel and soil particles. For instance, when the axial strain reaches 8%, the plastic strain at the location of gravel contact reaches 4.6, which significantly surpasses most of the surrounding plastic strain zones measuring around 1.3. Additionally, the maximum local stress within the soil sample is as high as 48 MPa. This failure event is distinct from viscoplastic failure observed in frozen fine-grained soil or brittle failure seen in frozen rock. The findings also indicate that the mesoscopic damage is about 0.3 when the axial strain is 10%. The study's findings can serve as a valuable guide for developing finite element models to assess damage caused by freezing in sandy gravel using AGF method.

期刊论文 2025-04-01 DOI: 10.1007/s10064-025-04183-5 ISSN: 1435-9529

The influence of mechanical loading paths on the characteristics of gap-graded granular assemblies was investigated using the discrete element method (DEM). Dense and loose gap-graded assemblies with finer fraction content, f(c), ranging from 0-100% were prepared and subjected to drained triaxial compression and extension loading paths. After examining key macroscale quantities, micromechanical analyses were conducted to elicit the particle-scale characteristics including the evolution of the fabric of the assemblies under the different loading paths. The results of the DEM analysis confirm the validity of the Mohr-Coulomb failure criteria at the critical state. While the mobilised friction angle at the peak is higher under extension than in compression, no significant difference was obtained in the critical state friction angle for both loading paths. Despite the higher mean stress transmitted by the gap-graded assemblies under compression in comparison with extension, the contribution of the finer particles to the total mean stress is not significantly influenced by the loading paths. Our data show that the variation in the fabric of granular assemblies under different loading paths does not always stem from an initial inherent anisotropy. Fabric anisotropy is marginally higher under extension than in compression despite having an initial isotropic fabric.

期刊论文 2025-03-31 DOI: 10.1007/s11440-025-02600-3 ISSN: 1861-1125
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共44条,5页