Context. The solar wind protons implanted in silicate material and combined with oxygen are considered crucial for forming OH/H2O on the Moon and other airless bodies. This process may also have contributed to hydrogen delivery to planetary interiors through the accretion of micrometre-sized dust and planetesimals during early stages of the Solar System. Aims. This paper experimentally investigates the depth distribution of solar wind protons in silicate materials and explores the mechanisms that influence this profile. Methods. We simulated solar wind irradiation by implanting 3 keV D-2(+) ions in three typical silicates (olivine, pyroxene, and plagio-clase) at a fluence of similar to 1.4 x 10(17) ions/cm(2). Fourier transform infrared spectroscopy was used to analyse chemical bond changes, while transmission electron microscopy (TEM) characterised microstructural modifications. Nanoscale secondary ion mass spectrometry (NanoSIMS) was employed to measure the D/O-16 ratio and determine the depth distribution of implanted deuterium. Results. The newly produced OD band (at 2400-2800 cm(-1)) in the infrared spectrum reveals the formation of O-D bonds in the irradiated silicates. The TEM and NanoSIMS results suggest that over 73% of the implanted D accumulated in fully amorphous rims with a depth of 70 nm, while 25% extended inwards to similar to 190 nanometres, resulting in partial amorphisation. The distribution of these deuterium particles is governed by the collision processes of the implanted particles, which involve factors such as initial energy loss, cascade collisions, and channelling effects. Furthermore, up to 2% of the total implanted D penetrated the intact lattice via diffusion, reaching depths ranging from hundreds of nanometres to several micrometres. Conclusions. Our results suggest that implanted solar wind protons can be retained in silicate interiors, which may significantly affect the hydrogen isotopic composition in extraterrestrial samples and imply an important source of hydrogen during the formation of terrestrial planets.
Volatile organic molecules and a complex organic refractory material were detected on the Moon and on lunar samples. The Moon's surface is exposed to a continuous flux of solar UV photons and fast ions, e.g. galactic cosmic rays (GCRs), solar wind (SW), and solar energetic particles (SEPs), that modify the physical and chemical properties of surface materials, thus challenging the survival of organic compounds. With this in mind, the aim of this work is to estimate the lifetime of organic compounds on the Moon's surface under processing by energetic particles. We performed laboratory experiments to measure the destruction cross of selected organic compounds, namely methane (CH4), 4 ), formamide (NH2CHO), 2 CHO), and an organic refractory residue, under simulated Moon conditions. Volatile species were deposited at low temperature (17- 18 K) and irradiated with energetic ions (200 keV) in an ultra-high vacuum chamber. The organic refractory residue was produced after warming up of a CO:CH4 4 ice mixture irradiated with 200 keV H+ + at 18 K. All the samples were analyzed in situ by infrared transmission spectroscopy. We found that destruction cross sections are strongly affected (up to one order of magnitude) by the dilution of a given organic in an inert matrix. Among the selected samples, organic refractory residues are the most resistant to radiation. We estimated the lifetime of organic compounds on the surface of the Moon by calculating the dose rate due to GCRs and SEPs at the Moon's orbit and by using the experimental cross values. Taking into account impact gardening, we also estimated the fraction of surviving organic material as a function of depth. Our results are compatible with the detection of CH4 4 in the LCROSS eject plume originating from layers deeper than about 0.7 m at the Moon's South Pole and with the identification of complex organic material in lunar samples collected by Apollo 17 mission.
Following spacecraft encounters with comets 67P/C-G and 1P/Halley, it was surprising that O2, expected to be a very minor species in their comas, was observed to outgas at a few percent abundance during their ice sublimation phases. This challenged the direct connection suggested between comets and material in the interstellar medium (ISM), which exhibits a very low O2/H2O gas-phase abundance, leading to a number of papers suggesting novel sources for O2. Since these eccentrically orbiting comets have lost significant amounts of their evaporating surfaces over their lifetimes, the O2 observed must have been stably trapped down to significant depths in these primordial icy bodies. O2 was also seen in the coma by Rosetta, along with other volatiles, long after water ice sublimation began to subside. Here we note that the extensive observations of the icy satellites of Jupiter (Europa, Ganymede, and Callisto) exhibit radiolytic and outgassing processes that provide certain direct parallels to interpretations of recent comet observations. Given that O2 is consistently observed in the atmospheres of icy Jovian satellites, as well as stably trapped as 'bubbles' (Johnson and Jesser, 1997) in their water ice surfaces, their spectral observations can help constrain the environment in which Jupiter-family and Oort cloud comets formed given that the observed O2/H2O abundances at both types of comets and icy moons are nearly identical. Based on the approximate charged particle radiation required to produce the observed steady-state concentrations of O2, we suggest that comets likely formed in a far more energetic environment than the ISM. While grains can be irradiated for longer timescales in the neutral ISM, small grains are expected to erode before significant O2 formation and trapping occurs. Independent of celestial dynamics then, an unknown radiation source, may provide insight to the first population of oxidized water ice grains in the early solar system.
Saturn's large and diffuse E ring is populated by microscopic water ice dust particles, which originate from the Enceladus plume. Cassini's Cosmic Dust Analyser sampled these ice grains, revealing three compositional particle types with different concentrations of salts and organics. Here, we present the analysis of CDA mass spectra from several orbital periods of Cassini, covering the region from interior to Enceladus' orbit to outside the orbit of Rhea, to map the distribution of the different particle types throughout the radial extent of the E ring. This will provide a better understanding of the potential impact of space weathering effects on to these particles, as the ice grains experience an increasing exposure age during their radially outward migration. In this context, we report the discovery of a new ice particle type (Type 5), which produces spectra indicative of very high salt concentrations, and which we suggest to evolve from less-salty Enceladean ice grains by space weathering. The radial compositional profile, now encompassing four particle types, reveals distinct radial variations in the E ring. At the orbital distance of Enceladus our results are in good agreement with earlier compositional analyses of E ring ice grains in the moon's vicinity. With increasing radial distance to Saturn however, our analysis suggests a growing degree of space weathering and considerable changes to the spatial distribution of the particle types. We also find that the proportion of Type 5 grains - peaking near Rhea's orbit - probably reflects particle charging processes in the E ring.
The astrochemistry of CO2 ice analogues has been a topic of intensive investigation due to the prevalence of CO2 throughout the interstellar medium and the Solar System, as well as the possibility of it acting as a carbon feedstock for the synthesis of larger, more complex organic molecules. In order to accurately discern the physicochemical processes in which CO2 plays a role, it is necessary to have laboratory-generated spectra to compare against observational data acquired by ground-and space-based telescopes. A key factor which is known to influence the appearance of such spectra is temperature, especially when the spectra are acquired in the infrared and ultraviolet. In this present study, we describe the results of a systematic investigation looking into: (i) the influence of thermal annealing on the mid-IR and VUV absorption spectra of pure, unirradiated CO2 astrophysical ice analogues prepared at various temperatures, and (ii) the influence of temperature on the chemical products of electron irradiation of similar ices. Our results indicate that both mid-IR and VUV spectra of pure CO2 ices are sensitive to the structural and chemical changes induced by thermal annealing. Furthermore, using mid-IR spectroscopy, we have successfully identified the production of radiolytic daughter molecules as a result of 1 keV electron irradiation and the influence of temperature over this chemistry. Such results are directly applicable to studies on the chemistry of interstellar ices, comets, and icy lunar objects and may also be useful as reference data for forthcoming observational missions.
Carbon, hydrogen, nitrogen, oxygen, and sulfur are the main elements involved in the solid-phase chemistry of various astrophysical environments. Among these elements, sulfur chemistry is probably the least well understood. We investigated whether sulfur ion bombardment within simple astrophysical ice analogs (originating from H2O:CH3OH:NH3, 2:1:1) could trigger the formation of complex organosulfur molecules. Over 1100 organosulfur (CHNOS) molecular formulas (12% of all assigned signals) were detected in resulting refractory residues within a broad mass range (from 100 to 900 amu, atomic mass unit). This finding indicates a diverse, rich and active sulfur chemistry that could be relevant for Kuiper Belt objects (KBO) ices, triggered by high-energy ion implantation. The putative presence of organosulfur compounds within KBO ices or on other icy bodies might influence our view on the search of habitability and biosignatures.
Molecular dynamics simulations are used to analyse the effects after 20 MeV sulfur ion impact into an ice mixture consisting of water, carbon dioxide, ammonia, and methanol. By using a so-called REAX, i.e., reactive, potential, the chemical processes occurring after the impact can be studied. Such impacts may occur in Jupiter's magnetosphere, where energetic S ions originate from Io's surface and irradiate ice surfaces of Jupiter's moons, of comets or ice dust particles entering the magnetosphere. By segmenting the ion trajectory to smaller pieces that fit into our simulation box, we can follow the ion from its impact point at the surface down to the depth where it is stopped. Electronic stopping is modelled by a thermal track model; it is necessary to use a sufficiently small track radius R in order to be able to include the hot-chemistry reactions occurring in the track volume. We find that the number of dissociations and ensuing reactions scales approximately linearly with the deposited energy density. In consequence, the total number of molecules produced is approximately proportional to the impact energy. In addition, the most complex molecules are formed at the highest energy densities. Smaller molecules such as formaldehyde and hydrogen peroxide, in contrast, are produced all along the ion track.
A study of electronic states of LiO, NaO, KO, MgO, and CaO molecules has been performed. Potential energy curves of the investigated molecules have been constructed within the framework of the XMC-QDPT2 method. Lifetimes and efficiencies of photolysis mechanisms of these monoxides have been estimated within the framework of an analytical model of photolysis. The results obtained show that oxides of the considered elements in the exospheres of the Moon and Mercury are destroyed by solar photons during the first ballistic flight.
The presence of volatiles near the lunar poles is considered. The chemical composition of a lunar atmosphere temporarily produced by comet impact is analyzed during the day and night. C-rich and long-period comets are insufficient sources of water ice on the Moon. O-rich short-period cornets deliver significant amounts of H2O, CO2 SO2, and S to the Moon. An observable amount of polar hydrogen can be delivered to the Moon by a single impact of all O-rich short-period comet with diameter of 5 kin in the form of water ice. The areas where CO2 and SO2 ices are stable against a thermal sublimation are estimated to be around 300 and 1500 km(2,) respectively. If water ice exists in 2 cm top regolith layer, CO2 and SO2 ices can be stable in the coldest parts of permanently shaded craters. The delivery rate of elemental Sulfur near the poles is estimated to be 10(6) gyr(-1). The sulfur content is estimated to be as 41 high as 1 wt% in the polar regions. The SELENE gamma-ray spectrometer can detect sulfur polar caps oil the Moon if the sulfur Content is higher than 1 wt %. This instrument can check the presence of hydrogen and minerals with the unusual chemical composition at the lunar poles.