Geocells are three-dimensional, interconnected cellular geosynthetics widely used to enhance the overall strength of soils. Their foldable structure can cause variations in pocket shape during installation, depending on the extent of extension. Understanding the impact of these shape variations is essential for optimizing reinforcement efficiency and reducing the associated geocell application costs. The aspect ratio, defined as the ratio of the cell's transverse (welded) axis to the longitudinal (wall summit) axis, is proposed to evaluate the degree of extension of the most commonly utilized honeycomb-shaped geocell. A coupled continuum-discontinuum numerical method was employed to investigate the behavior of honeycomb-shaped geocell reinforced soils across various aspect ratios under confined compressive loading. The simulation results indicate that a geocell with an aspect ratio of 1.0 exhibits optimal reinforcement efficiency, and whereas reinforcement efficiency decreases as the aspect ratio deviates from 1.0 causing pocket geometries to flatten. The superior performance of rounded geocells is attributed to their enhanced ability to promote load-bearing in strong contact subnetworks. This results in denser packing structures, higher contact force anisotropy from a microscopic perspective, and greater confinement capacity against deformation from a macroscopic perspective.
Alpine treelines ecotones are critical ecological transition zones and are highly sensitive to global warming. However, the impact of climate on the distribution of treeline trees is not yet fully understood as this distribution may also be affected by other factors. Here, we used high-resolution satellite images with climatic and topographic variables to study changes in treeline tree distribution in the alpine treeline ecotone of the Changbai Mountain for the years 2002, 2010, 2017, and 2021. This study employed the Geodetector method to analyze how interactions between climatic and topographic factors influence the expansion of Betula ermanii on different aspect slopes. Over the past 20 years, B. ermanii, the only tree species in the Changbai Mountain tundra zone, had its highest expansion rate from 2017 to 2021 across all the years studied, approaching 2.38% per year. In 2021, B. ermanii reached its uppermost elevations of 2224 m on the western aspects and 2223 m on the northern aspects, which are the predominant aspects it occupies. We also observed a notable increase in the distribution of B. ermanii on steeper slopes (> 15 degrees) between 2002 and 2021. Moreover, we found that interactions between climate and topographic factors played a more significant role in B. ermanii's expansion than any single dominant factor. Our results suggest that the interaction between topographic wetness index and the coldest month precipitation (Pre(1)), contributing 91% of the observed variability, primarily drove the expansion on the southern aspect by maintaining soil moisture, providing snowpack thermal insulation which enhanced soil temperatures, decomposition, and nutrient release in harsh conditions. On the northern aspect, the interaction between elevation and mean temperature of the warmest month explained 80% of the expansion. Meanwhile, the interaction between Pre(1) and mean temperature of the growing season explained 73% of the expansion on the western aspect. This study revealed that dominant factors driving treeline upward movement vary across different mountain aspects. Climate and topography play significant roles in determining tree distribution in the alpine treeline ecotone. This knowledge helps better understand and forecast treeline dynamics in response to global climate change.
Through extensive laboratory experiments on unsaturated soils, it has been discovered that particle shape and matric suction significantly influence their mechanical properties. Prior studies have typically examined these factors individually and from a macroscopic perspective. In this study, the aspect ratio is utilized as a representative parameter for particle shape. Employing the Hill constitutive model, a series of triaxial shear numerical experiments of simulations on unsaturated soil were conducted. The results indicate a non-linear relationship between peak deviator stress and aspect ratio, with peak deviator stress initially increasing, then decreasing, and reaching its maximum at an aspect ratio of 1.2. The patterns observed in friction angle, cohesion, and critical stress ratio in relation to aspect ratio mirror those seen in peak deviator stress, with the friction angle exhibiting fluctuations as the particle aspect ratio increases. At a matric suction of 0 kPa, changes in particle shape have a negligible impact on mechanical properties. However, as matric suction increases, the volumetric strain's dilatancy turning point is advanced, and the effect of particle shape becomes progressively more pronounced. Under varying conditions of particle shape and matric suction, the alteration in bedding angle affects the peak deviator stress and stress ratio, albeit the extent of this influence is limited.
Termite mounds are keystone structures in African savannas, affecting multiple ecosystem processes. Despite the large size of termite mounds having the potential to modify conditions around them, patterns of mound-induced ecosystem effects have been assumed to be isotropic, with little attention given to how effects might vary around mounds. We measured soil nitrogen content, grass species composition, and mammalian grazing on and off termite mounds in the four cardinal directions, and across wet and dry seasons at three savanna sites varying in mean annual rainfall in South Africa's Kruger National Park. Evidence of directional effects (anisotropy) on ecosystem properties around termite mounds varied with site. Grass species composition differed between north- and south-facing slopes at the two drier sites where mounds were taller. However, differences in grazing extent and soil nitrogen content around mounds were only present at the intermediate rainfall site where mammalian herbivore biomass was highest, and mounds were of medium height. Our results suggest that termite mound effects display significant variation with direction, but that the emergence of directional effects is context dependent. Our results further suggest that such context-dependent directional effects can lead to positive feedback loops between termites, abiotic conditions, and mammalian herbivores.
In general, pile foundations are utilized to support structures like tall buildings, bridges, and transmission towers, which are frequently subjected to lateral stresses initiated by wind, action of waves, earthquakes, or traffic loads. Several high-rise structures, highway and railroad overpasses, as well as transmission towers, are constructed near slopes and rely on pile foundations for support. Due to the effects of wind and waves, pile foundations are continuously subjected to cyclic loads. For piles supporting tall buildings, transmission towers, offshore structures, or infrastructure in seismic zones, 1-way or 2-way cyclic lateral loads are commonly applied. Therefore, while designing pile foundations, it is essential to understand how piles behave laterally when they are located near a sloping crest. One of the primary challenges in ensuring the efficient functioning of the superstructure is analyzing how the soil and foundations respond when exposed to long-term lateral loads, such as wind, over an extended period on the piles of offshore platforms. Because of the presence of slope, the pile's lateral load capacity decreased due to the reduced ability of the soil to provide passive resistance. This paper presents small-scale 1-g model tests conducted on the sand to assess the loss of pile's lateral capacity when subjected to 100 cycles under 1 and 2-way cyclic loading. The Relative Density (60%) and varying slopes (Horizontal ground, 1V:3H) with varying spacing (5D and 7D) and aspect ratios (L/D) of 25 and 40 were implemented in this study. Cyclic lateral load tests were performed for sloping as well as horizontal ground. A major reduction in lateral capacity, exceeding 60%, was observed due to the application of cyclic loading. Moreover, the transition from horizontal ground (HG) to sloping ground (SG) decreased the maximum bending moment by 25-40%. This study exemplifies the piles' behaviour when subjected to cyclic lateral loading while resting on a sloping crest, which represents a critical scenario in pile foundation design.
Landscapes evolve through nonlinear interactions between soil, vegetation, and climate. In semi-arid ecosystems, soil moisture variability (SMV) and vegetation variability (VV) can be strongly related to landscape organisation induced by differences in insolation on opposing north-facing slopes (NFS) and south-facing slopes (SFS). Due to its complex interactions with various processes and factors, soil moisture and vegetation exhibit significant variability in both space and time. In this study, the Channel-Hillslope Integrated Landscape Development (CHILD) landscape evolution model (LEM), coupled to a dynamic vegetation model (BGM) and equipped with a spatially distributed solar radiation component is used. The model is used to investigate the implications of various soil, climatic, and geomorphic factors on SMV and VV over landscapes with different characteristics. The analysis of model results indicates that SMV and VV are more sensitive to changes in geomorphic (hillslope diffusion and uplift rate) and climate (solar radiation, precipitation) factors than to soil hydrologic factors (anisotropy, porosity, infiltration capacity, root depth, and pore size distribution) considered in this study. Spatial variability increases with decreases in hillslope diffusion, and with increases in uplift rates and latitude, while temporal variability has the same response to those factors, and also increases with precipitation. All of these factors contribute to larger difference in condition on NFS and SFS, which ultimately is reflected in SMV and VV. Slope-area, soil moisture-area, and vegetation-area relationships revealed that the difference in SMV and VV between NFS and SFS is more pronounced for smaller contributing areas, where NFS are steeper than SFS. They also show that the temporal variability of soil moisture and vegetation is less in SFS than in NFS.
Our current understanding of semiarid ecosystems is that they tend to display higher vegetation greenness on polar-facing slopes (PFS) than on equatorial-facing slopes (EFS). However, recent studies have argued that higher vegetation greenness can occur on EFS during part of the year. To assess whether this seasonal reversal of aspect-driven vegetation is a common occurrence, we conducted a global-scale analysis of vegetation greenness on a monthly time scale over an 18-year period (2000-2017). We examined the influence of climate seasonality on the normalized difference vegetation index (NDVI) values of PFS and EFS at 60 different catchments with aspect-controlled vegetation located across all continents except Antarctica. Our results show that an overwhelming majority of sites (70%) display seasonal reversal, associated with transitions from water-limited to energy-limited conditions during wet winters. These findings highlight the need to consider seasonal variations of aspect-driven vegetation patterns in ecohydrology, geomorphology, and Earth system models. Plain Language Summary Sunny (equatorial-facing) slopes receive more solar radiation than shady (polar-facing) slopes. A common assumption in water-limited semiarid ecosystems is that this difference in solar radiation results in shady slopes being greener than sunny slopes, because they lose less water to the atmosphere due to evapotranspiration. Some studies have suggested seasonal changes to this pattern, but the lack of a global-scale analysis has prevented a clear understanding of the extent of this phenomenon and its causes. Here, we used an 18-year record of remotely sensed monthly data to compare vegetation activity on opposing slopes in 60 semiarid catchments with different climates from all over the world. Our results show three different patterns: (1) always greener shady slopes; (2) greener shady slopes in summer but greener sunny slopes in winter; and (3) no discernible difference between slopes. Contrary to the common belief that shady slopes are always greener in semiarid landscapes, the majority of the studied sites show a seasonal reversal of this patterns in vegetation greenness. We attribute this contrasting behavior to the timing of precipitation and different growth responses of vegetation types on opposing slopes. At sites having wet winters, sunny slopes benefit more from solar radiation; hence, their vegetation grows more rapidly than that of shady slopes. These findings underline the importance of considering the seasonal variations of vegetation pattern on opposing slopes in ecohydrological, geomorphological, and Earth system models.