Asbestos is a silicate mineral that occurs naturally and is made up of flexible fibres that are resistant to heat, fire, and chemicals and do not conduct electricity. Both anthropogenic disturbance and natural weathering of asbestos-containing waste materials (ACWMs) can result in the emission of asbestos fibre dust, which when breathed, can cause asbestosis, a chronic lung illness that happens due to prolonged exposure of such fibre dust, and can cause 'mesothelioma' cancer. Although asbestos mining and its utilisation had been banned in many countries, there is still a significant issue of ACWMs disposal in the built environment and abandoned sites. It is neither practical nor economical to safely eliminate ACWMs from the built environment, and it is estimated that globally, 4 billion metric tonnes of ACWMs require safe management strategies. The toxicity of inhaled asbestos fibre relies on its surface properties, and in particular the distribution of iron, which serves a critical role in pathogenicity by forming reactive free radicals that damage DNA, thereby trigging cancer. Examining the usefulness of higher plants and microbes in the bioremediation of soil contaminated with ACWMs is the prime aim of the review. Higher plants and microorganisms such as lichens, fungi, and bacteria often play a major role in the remediation of soil contaminated with ACWMs by facilitating the bioweathering of asbestos and the removal of iron to mitigate the toxicity of asbestos.
This study delves into the repercussions of the 2023 earthquake in Turkey, particularity its impact on air pollution. A year post-event, it is evident that scientific literature has paid limited attention to monitoring the situation. However, the release of hazardous substances, such as asbestos, lead, and other toxins, from damaged structures poses a significant threat by contaminating nearby air, soil, and water sources, thereby jeopardizing ecosystems and public well-being. The improper disposal of waste post-earthquake and the presence of mining and oil refinery sites in the region contribute to potential air pollutants. These circumstances create challenging environments conducive to the spread of respiratory diseases, with potential long-term health and social consequences. Unfortunately, existing data gaps hinder a comprehensive understanding of the situation. This paper pioneers the reporting and analysis of data regarding potential sources of air pollution resulting from the earthquake in Turkey. It also pinpoints gaps in knowledge, outlining areas that demand further investigation. To effectively prevent and mitigate air pollution risks and associated health concerns linked to earthquakes, strategic recommendations are proposed. A key suggestion is the establishment of post-disaster air pollution monitoring systems capable of swiftly identifying emerging health issues, facilitating efficient responses, and curtailing potential long-term effects of the disaster. The paper underscores the necessity for continuous health monitoring of the affected population to mitigate possible adverse impacts on human health. These strategies play a pivotal role in reducing the likelihood of air pollution, supporting emergency response and recovery initiatives, and fostering new dedicated scientific studies.