共检索到 4

Extreme flooding is becoming a more serious hazard to the world's infrastructure, especially in high-risk locations, and is linked to global warming and human activity. This research employs an analytical hierarchy process (AHP) model and geographic information system (GIS) analysis to delineate flood risk zones. An eight-factor multiparametric method to flood risk susceptibility mapping includes precipitation, distance to river, the slope, elevation, land use/cover, topographic wetness index, type of soil, and curvature. An urban flood risk index (UFRI) is established based on vulnerability mapping, revealing that approximately 33% of Haripur District, Khyber Pakhtunkhwa, Pakistan, is prone to floods. Additionally, land use cover analysis indicates that 23% of the crop area in Haripur District is at risk from flood disasters. Recognizing the potential for costly damage to infrastructure, flood hazard mapping serves as a valuable tool to prioritize risk areas for urban and agricultural development. The outcomes of this study are anticipated to significantly contribute to predisaster flood control management in the studied area.

期刊论文 2025-01-01 DOI: 10.1155/ijge/6480655 ISSN: 1687-885X

Open-pit mining seriously damages the original vegetation community and soil layer and disturbs the carbon cycle of vegetation and soil, causing instability in the mining ecosystem and decrease in the carbon sequestration capacity of the mining area. With the deepening of environmental awareness and the influence of related policies, the ecological restoration of open-pit mines has been promoted. The mining ecosystem is distinct owing to the disperse distribution of mines and small scale of single mines. However, the carbon sequestration capability of mines after ecological restoration has not been clearly evaluated. Therefore, this study evaluated the carbon sequestration capacity of restoration mines, taking the mines of the Yangtze River Basin in Jurong City, Jiangsu Province as the research objects. Firstly, the visual effects of the vegetation and soil in their current status were determined through field investigation, the methods for sampling and data collection for the vegetation and soil were selected, and the specific laboratory tests such as the vegetation carbon content and soil organic carbon were clarified. Meanwhile, the evaluation system consisting of three aspects and nine evaluation indexes was established by using the analytic hierarchy process (AHP) and fuzzy comprehensive evaluation (FCE). The process of evaluation included the following: the establishment of the judgment matrix, calculation of the index weight, determination of the membership function, and establishment of the fuzzy membership matrix. Finally, the evaluation results of the restoration mines were determined with the 'excellent, good, normal and poor' grade classification according to the evaluation standards for each index proposed considering the data of the field investigation and laboratory tests. The results indicated that (1) the evaluation results of the mines' carbon sequestration capacity were of excellent and good grade at a proportion of 62.5% and 37.5%, which was in line with the field investigation results and demonstrated the carbon sequestration capacity of all the restored mines was effectively improved; and (2) the weights of the criterion layer were ranked as system stability > vegetation > soil with the largest value of 0.547, indicating the stability of the system is the main factor in the carbon sequestration capacity of the mines and the sustainability of the vegetation community and the stability of soil fixation on the slope. The proposed evaluation system effectively evaluates the short-term carbon sequestration capability of the restoration mining system according to the visual effects and the laboratory testing results, objectively reflecting the carbon sequestration capacity via qualitative assessment and quantitative analysis. The evaluation method is relatively applicable and reliable for restoration mines and can provide a reference for similar ecological restoration engineering.

期刊论文 2024-09-01 DOI: 10.3390/su16188149

A series of hydrogeologic framework model (HFM)-based steady- and transient-state numerical simulations is performed first using a coupled subsurface flow-transport numerical model to analyze groundwater flow and salt transport in an actual three-dimensional complex coastal aquifer system before and during groundwater pumping. A series of analytic hierarchy process (AHP)-based multi-criteria evaluations is then performed applying a multi-criteria decision-making approach to determine optimal pumping location and rate for a new pumping well in the complex coastal aquifer system during groundwater pumping. The complex coastal aquifer system is composed of six anisotropic fractured porous geologic media (five rock formations and one fault) and three isotropic porous geologic media (three soil formations) and shows high geometric irregularity and significant heterogeneity and anisotropy of the nine geologic media. Results of the steady-state numerical simulations show successful model calibration with 26 measured groundwater levels and two observed seawater intrusion front lines. The latter two are determined by spatial interpolation and extrapolation of electrical conductivity logging data and electrical resistivity survey data, respectively. Based on the status and prospect of necessary water uses and available groundwater resources, the field observations of groundwater and seawater intrusion, and the analyses of the steady-state numerical simulation after the model calibration, six candidate pumping locations are selected for the new pumping well. In addition, from six preliminary individual transient-state numerical simulations, maximum pumping rates at the six candidate pumping locations are calculated first, and a set of six incremental candidate pumping rates is then assigned at each of the six candidate pumping locations. Results of the transients-state numerical simulations show that groundwater flow and salt transport are spatially and temporally changed, and seawater intrusion is further intensified by groundwater pumping. In addition, the magnitudes of such spatial and temporal changes and intensification are significantly different depending on the candidate pumping locations and rates. Results of the steady- and transient-state numerical simulations also show that both complexity (geometric irregularity, heterogeneity, and anisotropy including the fault) and topography have significant effects on the spatial distributions and temporal changes of groundwater flow and salt transport in the coastal aquifer system before and during groundwater pumping. In addition, results of statistical estimations of the mesh Peclet and Courant numbers confirm acceptabilities of minimizing numerical dispersion in the steady- and transient-state numerical simulations. Based on the analyses of the transient-state numerical simulations, eight multiple criteria are chosen to judge, prioritize, and rank the six candidate pumping locations and six candidate pumping rates for optimal pumping. Results of the multi-criteria evaluations determine the optimal pumping location and rate for the new pumping well among the six candidate pumping locations and six candidate pumping rates. In addition, results of consistency checks confirm consistencies of judgments in the multi-criteria evaluations. Numerical simulations with successful model calibration show that spatial and temporal changes in groundwater flow and salt transport significantly depend on candidate pumping locations and rates Statistical estimations of the mesh Peclet and Courant numbers confirm acceptabilities of minimizing numerical dispersion in the numerical simulations Multi-criteria evaluations determine optimal pumping location and rate, and consistency checks confirm consistencies of judgments in the multi-criteria evaluations

期刊论文 2024-06-01 DOI: 10.1029/2023WR035486 ISSN: 0043-1397

Due to the impact of COVID-19, people's demand for non-contact tourism is increasing. The development of Internet technologies such as the Internet of Things, virtual reality (VR), and augmented reality (AR) can meet this demand. Internet technology makes non-contact tourism grow. However, these new technologies are emerging only within application cases, which cannot provide comprehensive methodological guidance for tourism suppliers. Despite the booming development of winter tourism in China, there are still many problems, especially affecting the tourist experience.rarchy process (AHP) and activity, setting, experience and benefit (ASEB) grid analysis were used to analyze the activities, settings, experiences and benefits of the scenic spot from the tourist perspective taking the Dagu Glacier Scenic Spot (DGSS) as an example. The research aims to increase the attraction of the scenic zone, and promote the coordinated and sustainable development of business in West China under the goal of improving tourists' experiences. The results show that: subgoals of experience (E) and benefit (B) are the main directions of the development of ice and snow tourism in the DGSS. Furthermore, the threat of benefits (TB), the threat of setting (TS), the threat of experience (TE), the opportunities of benefits (OB), the opportunities of setting (OS), and the opportunities of experience (OE) are the main concerns.

期刊论文 2021-03-01 DOI: http://dx.doi.org/10.3390/su13052614
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页