Atmospheric ammonia (NH3) has multiple impacts on the environment, climate change, and human health. China is the largest emitter of NH3 globally, with the dynamic inventory of NH3 emissions remaining uncertain. Here, we use the second national agricultural pollution source censuses, integrated satellite data, 15N isotope source apportionment, and multiple models to better understand those key features of NH3 emissions and its environmental impacts in China. Our results show that the total NH3 emissions were estimated to be 11.2 +/- 1.1 million tonnes in 2020, with three emission peaks in April, June, and October, primarily driven by agricultural sources, which contributed 74% of the total emissions. Furthermore, employing a series of quantitative analyses, we estimated the contribution of NH3 emissions to ecosystem impacts. The NH3 emissions have contributed approximately 22% to secondary PM2.5 formation and a 16.6% increase in nitrogen loading of surface waters, while ammonium deposition led to a decrease in soil pH by 0.0032 units and an increase in the terrestrial carbon sink by 44.6 million tonnes in 2020. Reducing agricultural NH3 emissions in China would contribute to the mitigation of air and water pollution challenges, saving damage costs estimated at around 22 billion US dollars due to avoided human and ecosystem health impacts.
Acidification of slurry is a promising approach for reducing ammonia emissions during the application procedure. Since only a few studies have been conducted focusing on ammonia emissions during the application of liquid organic fertilizers on the soil surface, a suitable incubation system was developed to evaluate the effects of acidification under controlled conditions. This incubation system was used to measure the ammonia emissions of various liquid organic fertilizers. The substrates were acidified with sulfuric and citric acid to different pH values to determine both the influence of the pH value of the substrates and of the type of acid on the ammonia emissions. The emissions decreased with declining pH value, and the reduction in emissions compared to the initial pH of the substrate was over 86% for pH 6.5 and over 98% for pH 6.0 and below. At the same pH value, the ammonia emissions did not differ between substrates acidified with citric acid and sulfuric acid, although more than twice as much 50% citric acid was required compared to 96% sulfuric acid to achieve the same pH value. Overall, our results demonstrate that the incubation system used is suitable for measuring ammonia emissions from surface-applied liquid organic fertilizers. The system allows for the differentiation of emission levels at various pH levels and is therefore suitable for testing the effectiveness of additives for reducing ammonia emissions from liquid organic fertilizers.