共检索到 2

Corn silk (CS), an agricultural byproduct obtained after the processing of corn, is usually dumped as waste. Worldwide there is a growing concern to utilise this waste for making value-added products. This work tried to improve the functional properties of corn silk fibres and utilise them to fabricate biocomposites for automotive applications. Raw corn silk fibres were alkali treated (2%, 45 min) to achieve around 11% improvement in tensile strength, 14% improvement in elongation-at-break and 26% reduction in initial modulus. The alkali-treated fibres were further processed to prepare bi-directional carded webs which were ultimately reinforced in PLA matrix utilising compression-moulding technology. The biocomposites developed with different mass fractions (10% to 50%) of alkali-treated corn silk fibres were evaluated for their functional properties. The biocomposite, formulated with 40% mass fractions of treated corn silk fibre and poly(lactic) acid, exhibited the highest mechanical performance-tensile strength (74.57 MPa), Young's modulus (4.28 GPa), Flexural strength (442.45 MPa), breaking elongation (2.04%) and impact strength (3.2 kJ/m2). The biocomposites were also found to be thermally stable with no significant weight loss till 319 degrees C and 98.49% final weight loss at the end of 780 degrees C. Those biocomposites exhibited biodegradability with 2.73% weight loss and 13.11% strength loss in 30 days of burial in soil. The biocomposite reinforced with 40% alkali-treated corn silk fibres demonstrated high potential for automotive namely door panels, exterior under-floor panels, instrument panels, internal engine covers, packaging trays, seat backs, etc. Moreover, this study advances sustainable biocomposites by enhancing CS fibre properties, achieving superior mechanical strength, thermal stability, and biodegradability for automotive applications.

期刊论文 2025-05-01 DOI: 10.1007/s10965-025-04408-x ISSN: 1022-9760

In the context of sustainable materials, this study explores the effects of accelerated weathering testing and bacterial biodegradation on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/rapeseed microfiber biocomposites. Accelerated weathering, simulating outdoor environmental conditions, and bacterial biodegradation, representing natural degradation processes in soil, were employed to investigate the changes in the mechanical, thermal and morphological properties of these materials during its post-production life cycle. Attention was paid to the assessment of the change of structural, mechanical and calorimetric properties of alkali and N-methylmorpholine N-oxide (NMMO)-treated rapeseed microfiber (RS)-reinforced plasticized PHBV composites before and after accelerated weathering. Results revealed that accelerated weathering led to an increase in stiffness, but a reduction in tensile strength and elongation at break, of the investigated PHBV biocomposites. Additionally, during accelerated weathering, the crystallinity of PHBV biocomposites increased, especially in the presence of RS, due to both the hydrolytic degradation of the polymer matrix and the nucleating effect of the filler. It has been observed that an increase in PHBV crystallinity, determined by DSC measurements, correlates with the intensity ratio I1225/1180 obtained from FTIR-ATR data. The treatment of RS microfibers increased the biodegradation capability of the developed PHBV composites, especially in the case of chemically untreated RS. All the developed PHBV composites demonstrated faster biodegradation in comparison to neat PHBV matrix.

期刊论文 2024-03-01 DOI: 10.3390/polym16050622
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页