Resourceful utilisation of tailings waste remains a hotspot in global research. While silica-aluminate-rich copper tailings can serve as raw materials for geopolymer preparation, their high Si/Al ratio significantly limits the geopolymerization degree. This study investigates the feasibility of developing copper tailings-based geopolymers for road base applications, using copper tailings as the primary raw material supplemented with 30 % soft soil, 15 % fly ash, and 5 % cement. The effect of NaOH content on the strength characteristics of copper tailings-based geopolymers was explored by the unconfined compressive strength test and triaxial test. The mineral composition and microstructure of copper tailings-based geopolymers specimens were characterised based on the microscopic technique. The results show that: (1) With the increase of NaOH content, the unconfined compressive strength of the copper tailings base polymer increases and then decreases, and reach the maximum value when the NaOH content is 1 %. Compared with the sample without NaOH, the addition of 1 % NaOH increased the unconfined compressive strength by 47 % at the early stage and 69 % at 28d curing age. (2) An optimal NaOH content significantly improves the shear performance of the copper tailings-based polymer, primarily by enhancing its cohesion. Triaxial test results demonstrate that 1 % NaOH addition increases cohesion by 73 % at 28d curing age. (3) The NaOH promotes the formation of geopolymer gel, refines the pore structure, and increases sample density, thereby enhancing strength. Overall, the research results can provide a reference for the application of copper tailings solid waste in roadbed materials.
Traditional disposal methods such as landfilling and land reclamation are insufficient to mitigate the environmental impact of construction spoil, making non-sintered blocks a promising approach for resource utilization. This study investigates the production and performance of steel slag soil blocks as an alternative to conventional cement-based materials for non-sintered blocks. The optimal manufacturing parameters were identified as a sodium silicate solution with 6% Na2O, 30% steel slag content, a liquid/solid ratio of 0.18, and a forming pressure of 10 MPa, achieving a peak compressive strength of 14.46 MPa. Further, the synergistic combination of alkali activation and carbonation enhanced compressive strength to 17.4 MPa, attributed to the development of a compact microstructure characterized by a honeycomb-like C-(A)-S-H gel and well-crystallized, triangular-shaped aragonite. However, durability tests under freeze-thaw and wet-dry cycles revealed that carbonation can detrimentally affect performance. The transformation of C-(A)-S-H gel into calcium carbonate, with relatively weaker cementitious properties, led to internal cracking and surface detachment. Micro-CT analysis confirmed ring-like patterns under freeze-thaw conditions and diagonal cracks during wet-dry cycling, whereas reference blocks incorporating 30% ordinary Portland cement maintained superior compactness with no cracks. These findings suggest that although the alkali activation and carbonation process enhances early strength, further optimization is necessary to improve long-term durability before broader application can be recommended.
Seeking ways to effectively utilise iron tailings within the green building sector is a pressing issue at present. In this study, using iron tailings as the main raw material and cement as the auxiliary cementitious material, the effects of sodium silicate (SS) content and carbonation curing on the compressive strength, stiffness, microstructure and mineral composition of cemented iron tailings (SSCIT) were investigated. The results showed that a certain amount of SS could increase the strength and stiffness of SSCIT. By adding 6% SS, the strength and stiffness of SSCIT reached the maximum value. The addition of SS promoted the dissolution of silicate minerals, and the generated geopolymerised gel binder filled the pores of specimens, enhanced the bonding force between the interfaces of soil particles, and improved the specimen compactness. However, carbonation curing adversely affected the strength of SSCIT. Carbonation caused the hydration products of SSCIT to change, and the decalcification and decomposition of the C-S-H gel increased the porosity of SSCIT, leading to a decrease in strength. In addition, using iron tailings for road base materials is an efficient and feasible method of utilisation.
Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO2/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO2/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO2/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Expansive soils pose significant challenges to various engineering applications due to their volume-changing behavior in response to moisture fluctuations. The expansive nature of these soils results in undesirable consequences such as swelling, shrinkage, and loss of structural integrity, affecting the stability of foundations, pavements, tunneling, etc. Globally, infrastructure has faced both short-term and long-term damage from these expansive soils. Numerous mechanical and chemical techniques have been extensively employed to mitigate the extent of soil expansiveness and the resultant damages. This paper presents an exploration, focusing on the comparative evaluation of two distinct stabilization approaches, i.e., lime treatment and alkali-activation treatment. Lime, as a traditional calcium-based stabilizer, engages in pozzolanic reactions to enhance soil stability. In contrast, alkali-activation treatment, a non-calcium-based technique, employs geopolymers to achieve analogous results. This investigation examines and compares the effects of both methods on reducing the swelling potential of expansive soils. Their performances are evaluated and discussed through swelling tests as well as corresponding microstructure analyses.
Construction spoil (CS), a prevalent type of construction and demolition waste, is characterized by high production volumes and substantial stockpiles. It contaminates water, soil, and air, and it can also trigger natural disasters such as landslides and debris flows. With the advent of alkali activation technology, utilizing CS as a precursor for alkali-activated materials (AAMs) or supplementary cementitious materials (SCMs) presents a novel approach for managing this waste. Currently, the low reactivity of CS remains a significant constraint to its high-value-added resource utilization in the field of construction materials. Researchers have attempted various methods to enhance its reactivity, including grinding, calcination, and the addition of fluxing agents. However, there is no consensus on the optimal calcination temperature and alkali concentration, which significantly limits the large-scale application of CS. This study investigates the effects of the calcination temperature and alkali concentration on the mechanical properties of CS-cement mortar specimens and the ion dissolution performance of CS in alkali solutions. Mortar strength tests and ICP ion dissolution tests are conducted to quantitatively assess the reactivity of CS. The results indicate that, compared to uncalcined CS, the ion dissolution performance of calcined CS is significantly enhanced. The dissolution amounts of active aluminum, silicon, and calcium are increased by up to 420.06%, 195.81%, and 256.00%, respectively. The optimal calcination temperature for CS is determined to be 750 degrees C, and the most suitable alkali concentration is found to be 6 M. Furthermore, since the Al O bond is weaker and more easily broken than the Si O bond, the dissolution amount and release rate of active aluminum components in calcined CS are substantially higher than those of active silicon components. This finding indicates significant limitations in using CS solely as a precursor, emphasizing that an adequate supply of silicon and calcium sources is essential when preparing CS-dominated AAMs.