This article investigates the snow albedo changes in Colombian tropical glaciers, namely, Sierra Nevada de Santa Marta (SNSM), Sierra Nevada del Cocuy (NSC), Nevado del Ruiz (NDR), Nevado Santa Isabel (NDS), Nevado del Tolima (NDT), and Nevado del Huila (NDH). They are associated with the possible mineral dust deposition from the Sahara Desert during the June and July months using snow albedo (SA), snow cover (SC), and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites. And mineral dust (MD) from The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), both of them during 2000-2020. Results show the largest snow albedo reductions were observed at 39.39%, 32.1%, and 30.58% in SNC, SNSM, and NDR, respectively. Meanwhile, a multiple correlation showed that the glaciers where MD contributed the most to SA behavior were 35.4%, 24%, and 21.4% in NDS, NDC, and NDR. Results also display an increasing trend of dust deposition on Colombian tropical glaciers between 2.81 x 10-3 & mu;g & BULL;m-2 & BULL;year-1 and 6.58 x 10-3 & mu;g & BULL;m-2 & BULL;year-1. The results may help recognize the influence of Saharan dust on reducing snow albedo in tropical glaciers in Colombia. The findings from this study also have the potential to be utilized as input for both regional and global climate models. This could enhance our comprehension of how tropical glaciers are impacted by climate change.
The snow physical parameters are closely related to the sizes, shapes, and chemical composition of light-absorbing particles (LAPs). By utilizing a computer-controlled scanning electron microscope software called IntelliSEM-EPAS (TM), we first report the measured size-resolved concentration of soot, dust, and fly ash particles in fresh (wet) and aged (dry deposition) snow samples collected at an industrial city in China during and after a snowfall at intervals of 6-8 days. Due to wet scavenging by seasonal snow, soot and dust particles in snow are absorbed by 69.7% and 30.3% at wavelengths of 550 nm, lowering snow albedo by 0.0089 and 0.0039, respectively. Soot particle size increases slightly during dry deposition, whereas size-resolved mineral dust does not undergo a significant shift in particle size. These results indicate the essentiality to involve the effects of accurate size and composition of in-snow LAPs for a better assessment of snow light absorption and reflectance. Plain Language Summary A field survey was undertaken to collect freshly fallen (1) and aged surface (15) snow samples at 1-day intervals in the center of Changchun city, China, which is surrounded by heavy industrial emission sources. We used an advanced computer-controlled scanning electron microscope to determine particle size and number distributions of three major light-absorbing particle types with diameters of 0.2-10 mu m in seasonal snow, namely soot, dust, and fly ash. Soot and dust particles deposited in various ice-grain sizes via wet and dry deposition were also examined in terms of their contributions to light absorption and snow albedo reduction. We report here a first attempt to detect a combination of log-normal soot, dust, and fly ash in seasonal snow, as well as their potential effects on the reduction of snow albedo.
Commonly known as the Asian Water Tower, glaciers in the Tibetan Plateau (TP) and its surrounding regions are vital to the regional water cycle and water resources in the downstream areas. Recently, these glaciers have been experiencing significant shrinkage mostly due to climate warming, which is also profoundly modulated by the surface snow albedos. In this study, we summarized the current status of the glaciers in the TP and its sur-rounding region, focusing on glacier retreat and mass balance. Furthermore, based on glacier surface snow al-bedo data retrieved from MODIS (moderate resolution imaging spectroradiometer, with resolution of 500 m x 500 m), we investigated the potential impact of glacier surface snow albedo changes on glacier melting. The results demonstrated that glacier shrinkage was pronounced over the Himalayas and the southeast TP. The regional distribution of the average albedos on the glacier surface (during summer) exhibited similar patterns to those of glacier retreat and mass balance changes, indicating a significant relationship between the annual glacier mass balance and glacier surface albedos during the past decades (2001-2018). This reflected that albedo reduction, in addition with rising temperatures and changing precipitation, was a significant driver of glacier melting in the TP. Estimations based on glacier surface summer albedos and snowmelt model further suggested that the effect of surface albedo reduction can drive about 30% to 60% of glacier melting. Due to its strong light absorption, black carbon (BC) in snow can be a substantial contributor to albedo reduction, which enhanced glacier melting in summer in the TP by approximately 15%. This study improved our insights into the causes of glacier melting in the Tibetan Plateau.
The Arctic has warmed significantly since the early 1980s and much of this warming can be attributed to the surface albedo feedback. In this study, satellite observations reveal a 1.25 to 1.51% per decade absolute reduction in the Arctic mean surface albedo in spring and summer during 1982 to 2014. Results from a global model and reanalysis data are used to unravel the causes of this albedo reduction. We find that reductions of terrestrial snow cover, snow cover fraction over sea ice, and sea ice extent appear to contribute equally to the Arctic albedo decline. We show that the decrease in snow cover fraction is primarily driven by the increase in surface air temperature, followed by declining snowfall. Although the total precipitation has increased as the Arctic warms, Arctic snowfall is reduced substantially in all analyzed data sets. Light-absorbing soot in snow has been decreasing in past decades over the Arctic, indicating that soot heating has not been the driver of changes in the Arctic snow cover, ice cover, and surface albedo since the 1980s.
Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD), deposited on the surface snow of glacier can reduce the surface albedo. As there exists insufficient knowledge to completely characterize LAIs variations and difference in LAIs distributions, it is essential to investigate the behaviors of LAIs and their influence on the glaciers across the Tibetan Plateau (TP). Therefore, surface snow and snowpit samples were collected during September 2014 to September 2015 from Zhadang (ZD) glacier in the southern TP to investigate the role of LAIs in the glacier. LAIs concentrations were observed to be higher in surface aged snow than in the fresh snow possibly due to post-depositional processes such as melting or sublimation. The LAIs concentrations showed a significant spatial distribution and marked negative relationship with elevation. Impurity concentrations varied significantly with depth in the vertical profile of the snowpit, with maximum LAIs concentrations frequently occurred in the distinct dust layers which were deposited in non monsoon, and the bottom of snowpit due to the eluviation in monsoon. Major ions in snowpit and backward trajectory analysis indicated that regional activities and South Asian emissions were the major sources. According to the SNow ICe Aerosol Radiative (SNICAR) model, the average simulated albedo caused by MD and BC in aged snow collected on 31 May 2015 accounts for about 13% +/- 3% and 46% +/- 2% of the albedo reduction. Furthermore, we also found that instantaneous RF caused by MD and BC in aged snow collected on 31 May 2015 varied between 4-16 W m(-2) and 7-64 W m(-2), respectively. The effect of BC exceeds that of MD on albedo reduction and instantaneous RF in the study area, indicating that BC played a major role on the surface of the ZD glacier.
Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD) deposited on the glacier surface can reduce albedo, thus accelerating the glacier melt Surface fresh snow, aged snow, granular ice, and snowpits samples were collected between August 2014 and October 2015 on the Xiao Dongkemadi (XDKMD) glacier (33 degrees 04'N, 92 degrees 04'E) in the central Tibetan Plateau (TP). The Spatiotemporal variations of LAIs concentrations in the surface snow/ice were observed to be consistent, differing mainly in magnitudes. LAIs concentrations were found to be in the order: granular ice > snowpit > aged snow > fresh snow, which must be because of post-depositional effects and enrichment. In addition, more intense melting led to higher LAIs concentrations exposed to the surface at a lower elevation, suggesting a strong negative relationship between LA's concentrations and elevation. The scavenging efficiencies of OC and BC were same (0.07 +/- 0.02 for OC, 0.07 +/- 0.01 for BC), and the highest enrichments was observed in late September and August for surface snow and granular ice, respectively. Meanwhile, as revealed by the changes in the OC/BC ratios, intense glacier melt mainly occurred between August and October. Based on the SNow ICe Aerosol Radiative (SNICAR) model simulations, BC and MD in the surface snow/ice were responsible for about 52% +/- 19% and 25% +/- 14% of the albedo reduction, while the radiative forcing (RF) were estimated to be 42.74 +/- 40.96 W m(-2) and 21.23 +/- 22.08 W m(-2), respectively. Meanwhile, the highest RF was observed in the granular ice, suggesting that the exposed glaciers melt and retreat more easily than the snow distributed glaciers. Furthermore, our results suggest that BC was the main forcing factor compared with MD in accelerating glacier melt during the melt season in the Central TP. (C) 2017 Elsevier B.V. All rights reserved.