共检索到 2

Deposition of ambient black carbon (BC) aerosols over snow-covered areas reduces surface albedo and accelerates snowmelt. Based on in-situ atmospheric BC data and the WRF-Chem model, we estimated the dry and wet deposition of BC over the Yala glacier of the central Himalayan region in Nepal during 2016-2018. The maximum and minimum BC dry deposition was reported in pre- and post-monsoon respectively. Approximately 50% of annual dry deposition occurred in the pre-monsoon season (March to May) and 27% of the annual dry deposition occurred in April. The total dry BC deposition rate was estimated as -4.6 mu g m- 2 day- 1 providing a total deposition of 531 mu g m- 2 during the pre-monsoon season. The contribution of biomass burning and fossil fuel sources to BC deposition on an annual basis was 28% and 72% respectively. The annual accumulated wet deposition of BC was 196 times higher than the annual dry deposition. The ten months of observed dry deposition of BC (October 1, 2016 to August 31, 2017 - except December 2016) was -39% lower than that of WRFChem's estimated annual dry deposition from September 1, 2016 to August 31, 2017 partially due to model bias. The deposited content of BC over the snow surface has an important role in albedo reduction, therefore snow samples were collected from the surface of the Yala Glacier and the surrounding region in April 2016, 2017, and 2018. Samples were analyzed for BC mass concentration through the thermal optical analysis and single particle soot photometer method. The BC calculated via the thermal optical method was in the range of 352-854 ng g- 1, higher than the BC calculated through the particle soot photometer method and estimated BC in 2 cm surface snow (imperial equation). The maximum surface snow albedo reduction due to BC was 8.8%, estimated by a widely used snow radiative transfer model and a linear regression equation.

期刊论文 2024-09-01 DOI: 10.1016/j.apr.2024.102203 ISSN: 1309-1042

This study discusses year-long (October 2016-September 2017) observations of atmospheric black carbon (BC) mass concentration, its source and sector contributions using a chemical transport model at a high-altitude (28 degrees 12'49.21 '' N, 85 degrees 36'33.77 '' E, 4900 masl) site located near the Yala Glacier in the central Himalayas, Nepal. During a field campaign, fresh snow samples were collected from the surface of the Yala Glacier in May 2017, which were analysed for BC and water-insoluble organic carbon mass concentration in order to estimate the scavenging ratio and surface albedo reduction. The maximum BC mass concentration in the ambient atmosphere (0.73 mu g m(-3)) was recorded in the pre-monsoon season. The BC and water-insoluble organic carbon analysed from the snow samples were in the range of 96-542 ng g(-1) and 152-827 ng g(-1), respectively. The source apportionment study using the absorption Angstrom exponent from in situ observations indicated approximately 44% contribution of BC from biomass-burning sources and the remainder from fossil-fuel sources during the entire study period. The source contribution study, using model data sets, indicated similar to 14% contribution of BC from open-burning and similar to 77% from anthropogenic sources during the study period. Our analysis of regional contributions of BC indicated that the highest contribution was from both Nepal and India combined, followed by China, while the rest was distributed among the nearby countries. The surface snow albedo reduction, estimated by an online model - Snow, Ice, and Aerosol Radiation - was in the range of 0.8-3.8% during the pre-monsoon season. The glacier mass balance analysis suggested that BC contributed to approximately 39% of the total mass loss in the pre-monsoon season. (C) 2021 The Authors. Published by Elsevier Ltd.

期刊论文 2021-04-15 DOI: 10.1016/j.envpol.2021.116544 ISSN: 0269-7491
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页