在列表中检索

共检索到 2

It is known that a wireless sensor network uses some sort of sensors to detect a physical quantity of interest, in general. The wireless sensor network is a potential tool for exploring the difficult-to-access area on the earth and the concept may be extended to space applications in future. Recently, lunar water has been detected by a few lunar missions using remote sensing techniques. The lunar water is expected to be in the form of ice at very low temperatures of permanently dark regions on the moon. To support the remote observations and also to find out potential ice bearing sites on the moon, in-situ measurement of the lunar ice is essential. However, a rover may not be able to reach the permanently shadowed regions due to terrain irregularity. One possibility to access such areas is to use a wireless sensor network on the lunar surface. In this paper, we have investigated a possibility of in-situ exploration of lunar ice by a wireless sensor network. The research issues related to the lunar wireless sensor network and a few possible solutions have been reviewed for the sake of completeness. A key component in the system is an ice sensor, which can measure the permittivity of the ice at appropriate frequency to differentiate with the soil. We suggest an impedance based sensor for this purpose, whose design aspects were reported earlier. We have successfully tested pure ice sample made from Milli-Q water in the laboratory environment and the results are shown in this paper. (C) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

期刊论文 2013-07-15 DOI: 10.1016/j.asr.2012.09.006 ISSN: 0273-1177

A Wireless Sensor Network for in situ probing of lunar water/ice is proposed. The mission scenario in single and multi-tier architectures for probing water in a permanently shadowed region of the Moon and different scenarios of exploration are discussed. The ideas presented in the paper are a positive assertion of feasibility for the sensor node hardware, given current levels of technological advancements. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.

期刊论文 2011-08-03 DOI: 10.1016/j.asr.2011.04.004 ISSN: 0273-1177
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页