在列表中检索

共检索到 2

White clover (Trifolium repens) is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application. This study aims to investigate the difference in the mechanism of salt tolerance in relation to osmotic adjustment, enzymatic and nonenzymatic antioxidant defenses, and organic metabolites remodeling between salt-tolerant PI237292 (Trp004) and salt-sensitive Korla (KL). Results demonstrated that salt stress significantly induced chlorophyll loss, water imbalance, and accumulations of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2.-), resulting in reduced cell membrane stability in two types of white clovers. However, Trp004 maintained significantly higher leaf relative water content and chlorophyll content as well as lower osmotic potential and oxidative damage, compared with KL under salt stress. Although Trp004 exhibited significantly lower activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, monodehydroasorbate reductase, dehydroascorbate reductase, and glutathione reductase than KL in response to salt stress, significantly higher ascorbic acid (ASA), dehydroascorbic acid (DHA), glutathione (GSH), glutathione disulfide (GSSG), ASA/DHA, and GSH/GSSG were detected in Trp004. These findings indicated a trade-off relationship between antioxidant enzymes and nonenzymatic antioxidants in different white clover genotypes adapting to salt stress. In addition, Trp004 accumulated more organic acids (glycolic acid, succinic acid, fumaric acid, malic acid, linolenic acid, and cis-sinapic acid), amino acids (serine, l-allothreonine, and 4-aminobutyric acid), sugars (tagatose, fructose, glucoheptose, cellobiose, and melezitose), and other metabolites (myo-inositol, arabitol, galactinol, cellobiotol, and stigmasterol) than KL when they suffered from the same salt concentration and duration of stress. These organic metabolites helped to maintain osmotic adjustment, energy supply, reactive oxygen species homeostasis, and cellular metabolic homeostasis with regard to salt stress. Trp004 can be used as a potential resource for cultivating in salinized soils.

期刊论文 2025-01-01 DOI: 10.3390/plants14020145 ISSN: 2223-7747

Excessive aluminum (Al) in acidic soils is a primary factor that hinders plant growth. The objective of the present study was to investigate the effect and physiological mechanism of exogenous silicon (Si) in alleviating aluminum toxicity. Under hydroponic conditions, 4 mM Al significantly impeded the growth of white clover; however, pretreatments with 1 mM Si mitigated this inhibition, as evidenced by notable changes in growth indicators and physiological parameters. Exogenous silicon notably increased both shoot and root length of white clover and significantly decreased electrolyte leakage (EL) and malondialdehyde (MDA) content compared to aluminum treatments. This positive effect was particularly evident in the roots. Further analysis involving hematoxylin staining, scanning electron microscopy (SEM), and examination of organic acids (OAs) demonstrated that silicon relieved the accumulation of bioactive aluminum and ameliorated damage to root tissues in aluminum-stressed plants. Additionally, energy-dispersive X-ray (EDX) analysis revealed that additional silicon was primarily distributed in the root epidermal and cortical layers, effectively reducing the transport of aluminum and maintaining the balance of exchangeable cations absorption. These findings suggest that gradual silicon deposition in root tissues effectively prevents the absorption of biologically active aluminum, thereby reducing the risk of mineral nutrient deficiencies induced by aluminum stress, promoting organic acids exudation, and compartmentalizing aluminum in the outer layer of root tissues. This mechanism helps white clover alleviate the damage caused by aluminum toxicity.

期刊论文 2024-05-30 DOI: 10.7717/peerj.17472 ISSN: 2167-8359
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页