Integral bridges with longer spans experience an increased cyclic interaction with their granular backfills, particularly due to seasonal thermal fluctuations. To accurately model this interaction behaviour under cyclic loading, it is crucial to employ appropriate constitutive models and meticulously calibrate and test them. For this purpose, in this paper two advanced elastoplastic (DeltaSand, Sanisand-MS) and two hypoplastic (Hypo+IGS, Hypo+ISA) constitutive models with focus on small strain and cyclic behaviour are investigated. The soil models are calibrated based on a comprehensive laboratory programme of a representative highly compacted gravel backfill material for bridges. The calibration procedure is shown in detail and the model capabilities and limitations are discussed on the element test level. Additional triaxial tests with repeated un- and reloading reveal significant over- and undershooting effects for the majority of the investigated material models. Finally, cyclic finite element analyses on the soil-structure interaction of an integral bridge are conducted to compare the performance of the soil models. Qualitatively similar cyclic evolution of earth pressures are detected for the soil models at various bridge lengths and test settings. However, a substantially different cyclic settlement behaviour is observed. Additionally, the investigation highlights severe overshooting effects associated with the tested hypoplastic soil models. This phenomenon is studied in detail using a single integration point analysis. Supplementary studies reveal that the foot point deformation of the abutment significantly influences the lateral passive stress mobilisation and the amount of its increase with growing seasonal cycles.
Long integral bridges experience an enhanced cyclic soil structure interaction with their granular backfills, especially due to seasonal thermal loading. For numerical modelling of this interaction behaviour under cyclic loading, it is important to employ a suitable constitutive model and calibrate it thoroughly. However, up to the present, experimental data and calibrated soil models for this purpose with focus on typical well-graded coarse-grained bridge backfill materials are rarely available in the literature. Therefore, one aim of this paper is to present results of a comprehensive cyclic laboratory testing programme on highly compacted gravel backfill material. Based on this, a hypoplastic constitutive model with intergranular strain extension for small strain and cyclic behaviour is calibrated and evaluated against the experimental test data. The soil model's abilities and limitations are discussed at element test level. In addition, cyclic FE analyses of an integral bridge are conducted with several hypoplastic parameter sets from the literature and compared to the calibrated gravel backfill material. The investigation highlights that poorly-graded sands show significantly smaller cyclic earth pressures compared to well-graded gravels intended for the backfilling of a bridge. The soil structure interaction behaviour is clearly governed by the general soil model stiffness, including the small strain stiffness.
Soil biocementation through microbially induced carbonate precipitation (MICP) is a promising technique for improving soil behavior in a nondisruptive manner, particularly for rehabilitation and retrofitting applications. Previous studies characterizing the shear behavior of biocemented soils have concentrated on poorly graded sands, whereas research on well-graded gravelly soils, which are extensively used in shallow geotechnical structures, has been lacking. Mohr-Coulomb strength parameters have been predominately employed to interpret the macromechanical effects of biocementation, but the previously reported findings show significant contradictions. In this study, a well-graded aggregate, representative of commonly used well-graded gravelly soils, was biocemented and subjected to monotonic drained triaxial compression. The test results show remarkable improvements in shear behavior, with the observed changes in stress-strain responses, strength and stiffness development, and stress dilatancy agreeing with those reported for biocemented sands as well as conventional cemented soils. Relatively low cementation levels can effectively rectify the mechanical performance caused by poor compaction to that seen at optimal levels, demonstrating the feasibility and potential of biocementation for improving soils of this type. Detailed analysis of the results reveals the decisive role of cementing bonds and their degradation in causing behavioral changes at different shearing stages. The theories of bonded structure and force-chain evolution are used to explain the preyielding observations, while an analytical approach capable of quantifying the evolution of different strength components is presented for postyielding macromechanical characterization. Conversely to the inference drawn from the strength parameters, the largest improvement is found in the frictional rather than the dilative and cohesive components of strength. Further analysis reveals the commonality of the macromechanical effects of biocementation, density, and confinement, and a unique relationship between macromechanical composition and peak stress ratio emerges.