共检索到 1

Improper anti-drainage treatment of weakly expansive soil subgrades can lead to significant post-construction deformation and uneven settlement, which severely affect the operational safety and service life of engineering projects. To comprehensively analyze the evolution of soil volume and strength under different hydraulic coupling paths during wetting-drying (W-D) cycles, a loaded W-D cycle testing device was developed. Soil volume was measured during the W-D cycles, and the shear strength and soil-water characteristic curves were analyzed after different cycles. The results indicate that during the W-D cycles, changes in soil volume and strength exhibited distinct stages with similar evolution characteristics. Under the investigated loading conditions, the soil demonstrated significant collapsibility during the wetting process, which gradually diminished as the number of cycles increased. Eventually, the W-D cycles caused the soil to reach an equilibrium state, where its swelling and shrinkage behavior became nearly elastic. At equilibrium state, there is a corresponding void ratio for any moisture content, which is the elastic void ratio (e0el). The e0el is irrespective of the number of cycles and initial dry density. Conversely, higher load and larger amplitude in W-D cycles tend to decrease the e0el. Furthermore, by correlating the unsaturated soil matric suction, secant modulus, and stress path, the volume evolution mechanism of the soil was analyzed based on the soil effective stress theory and pore evolution. The results of this study can serve as a crucial reference point for revealing the deformation mechanism of weakly expansive soil subgrades and selecting appropriate road settlement control methods.

期刊论文 2025-05-21 DOI: 10.1016/j.enggeo.2025.108030 ISSN: 0013-7952
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页