The reinforcement and repair materials for earthen sites have high requirements for strength, resistance to deterioration, and aesthetic coordination. In this study, the enzyme-induced carbonate precipitation (EICP) and the microbially induced carbonate precipitation (MICP) techniques were used to reinforce the earthen site soil. The applicability of EICP and MICP for stabilizing earthen sites soil was investigated through static contact angle tests, disintegration tests and colorimetry tests. In addition, the improvement of mechanical properties of biotreated earthen sites soil was examined by unconfined compression strength tests. The tests results show that MICP and EICP techniques could improve the mechanical characteristics and water-stability properties of the earthen sites soil. With the increase in cementing solution concentration, the effectiveness of EICP was enhanced, while the water-stability and hydrophobicity of MICP-treated soils increased first and then decreased due to the influences of organic matter and soluble salts. EICP and MICP techniques showed different performance in reinforcing effects on calcium carbonate content, shear wave velocity, unconfined compressive peak strength, total disintegration time, and static contact angle. This study is expected to contribute valuable insights to the conservation of earthen heritage site using bio-based methods.