Preparation and characterization of biopolymer-based packaging materials have significantly gained importance because of sustainability, biodegradability, and eco-friendly nature. In this study, novel wheat gluten (WG)/cloisite 30B (C30B) organoclay-based bionanocomposite (BNC) films were prepared by solution casting method at various C30B concentrations (5%, 10%, and 15%). X-ray diffraction and field emission scanning electron microscopy revealed intercalation/exfoliation of C30B sheets into the WG matrix. WG-C30B 10% film was thermostable. It showed low surface roughness along with higher water barrier properties and surface hydrophobicity. The tensile strength values of WG and WG-C30B 10% films were found to be 0.7 +/- 0.02 and 1.11 +/- 0.01, respectively, indicating improvement in mechanical properties. WG-C30B 10% film demonstrated antibacterial activity against both Staphylococcus aureus and Salmonella enterica. Shelf life of green grapes was monitored under different conditions: 4 degrees C, ambient conditions, and 42 degrees C. WG-C30B 10% film proved effective in extending shelf life up to 18 days under ambient conditions. More than 50% of the bionanocomposite films were degraded in agricultural soil within 2 weeks, while completely degraded in sewage sludge soil after a few days. WG-C30B 10% film appeared to be promising regarding the demonstrated physico-chemical and antibacterial properties. This report would be useful in preparing biodegradable biopolymer-based packaging materials.
Loess exhibits high sensitivity to water, rendering it susceptible to strength loss and structural destruction under hydraulic effects of rainfall, irrigation and groundwater. As an emerging soil improvement technology, microbial induced carbonate precipitation (MICP) stands out for its cost-effectiveness, efficiency, and environmental sustainability. In this study, hydroxypropyl methylcellulose (HPMC) was innovatively introduced into the MICP process to improve the strength and water stability of loess, and a set of unconfined compressive strength (UCS), direct shear, laser particle size analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests were conducted. The results show that HPMC-modified MICP is able to generate a novel structural matrix combining organic and inorganic elements, significantly enhancing the strength, stiffness, and ductility of loess. HPMC protects loess from water erosion by forming viscous membranes on the surfaces of soil particles and calcium carbonate crystals. Increasing HPMC content can augment membrane viscosity, which is conducive to stabilizing the loess structure, but it has the negative effect of reducing inter-particle friction through increasing membrane thickness. As the HPMC content increased to 0.6%, the strength loss of loess under high water content decreased. These findings are expected to provide critical support for the engineering application of HPMC-modified MICP in loess improvement.