Global warming is causing unprecedented changes to permafrost regions with amplified effects in the Arctic through a phenomenon known as Arctic amplification. This intensified climate warming thaws both the discontinuous and continuous permafrost resulting in changes in the mechanical properties of the soils found in these regions. Since permafrost regions constitute nearly 24% of the Northern Hemisphere, understanding the strength of soils in thawed conditions is essential to analyze the stability of existing structures, and to design safer and more economical infrastructure in these regions. Specifically, thawing of the permafrost is causing considerable reductions in its strength of soils, which may lead to massive landslides, foundation failures, and so forth. Since frozen soil is a multiphase structure that consists of soil particles, unfrozen water, ice, and air, each constituent will influence the mechanical properties. This paper reviews the current state of knowledge of the impact of temperature, volumetric ice content, unfrozen water content, and frozen density on the compressive strength, peak shear strength, residual shear strength, undrained shear strength, and tensile strength of soils. The undrained shear strength of soil is said to have a linear correlation with temperature. In addition, the undrained cohesion of soil was found to depend on the temperature, whereas the undrained friction angle of soil was significantly influenced by volumetric ice content. An increase in the volumetric ice content up to 80% to 90% will cause a reduction in the peak and residual deviatoric stresses. In addition, an increase in volumetric ice content resulted in an increase in the compressive strength of the soil. The tensile and compressive strengths were found to be functions of the unfrozen water content. Global warming is causing the temperature of the permafrost, which is permanently frozen ground, to rise. This paper provides valuable insights into the impact of the changes in this ambient temperature on the strength of frozen soils in permafrost regions for a wide range of applications. Such insights are crucial for the design of resilient and stable infrastructure, such as foundations, embankments, and retaining walls, in which consideration of the reduced strength of thawed soils due to climate change will be necessary. In addition, the knowledge will allow for better management of vulnerable areas prone to landslides and erosion caused by the weakened soil strength permitting the implementation of mitigation measures before lives are lost and costly economic damages are incurred. Finally, this information will aid in early warning systems, emergency planning, and decision making to minimize the impact of hazards on human settlements and infrastructure. In this paper, a review of the current state of knowledge regarding the strength of frozen soils and the associated fluctuations in these strengths because of a rise in temperature are presented. Guidelines on the best practices for sample preparation and testing along with correlations to estimate various strength parameters are also provided.
Permafrost is an important part of the cryosphere, playing an integral role in the hydrologic cycle, ecology, and influencing human activity. Melting of ground ice can drastically change landscapes and associated thaw subsidence may induce instability of infrastructure. The terrain conditions on the Qinghai-Tibet Plateau are complex, and the spatial distribution of ground ice is highly variable, so knowledge of its abundance and variability is required for impact assessments relating to the degradation of permafrost. This study examined 55 permafrost samples from warm, ice-rich permafrost region in Beiluhe Basin, Qinghai-Tibet Plateau. The samples were examined using Computed Tomography scanning, and the ice content and cryostructure were determined. The results indicated that: 1) variation in volumetric ice content was considerable (0%-70%), with a mean value of 17%; 2) seven cryostructures were identified, including crustal, vein, lenticular, ataxitic, reticulate and layered cryostructure; 3) volumetric ice content varied by cryostructure, with the highest associated with layered and ataxitic cryostructures. Volumetric ice contents were lowest for samples with pore and lenticular cryostructures. This work provides detailed ground ice content and will be helpful for assessing thaw subsidence and infrastructure stability on Qinghai-Tibet Plateau.
Ground ice is a key component of permafrost, and its melt induced by climate change and anthropogenic disturbance has been causing increased ground surface subsidence, thermal erosion, and engineering problems. However, the distribution and quantity of ground ice in permafrost have yet to be investigated in detail on the Qinghai-Tibet Plateau (QTP), and consequently, an assessment of the nature of impacts associated with permafrost degradation is challenging. In this study, variation in near-surface ground ice content of the upper 2-3 m of the permafrost layer was examined by drilling 72 boreholes at eight sites in Beiluhe Basin, QTP, an area with relatively warm (near 0 degrees C) permafrost. High ground ice contents occur at most sites, but visible ice was absent at one site, where the vegetation cover has transitioned from a meadow to a sparsely-covered grassland. The moisture content within the active layer (surface to 2 m depth) increases with depth at most sites, and the higher moisture contents were associated with greater near-surface ground ice contents. The gravimetric moisture content (M-g) in permafrost typically ranged from 8% to 500%, and similar to 76% of samples were classified as ice rich (M-g >= 20%). The mean excess-ice content in near-surface permafrost was similar to 19% for all boreholes. At six flat sites, the minimum mean excess-ice content was about zero, and the mean maximum was similar to 22% at an alpine grassland site. The mean excess-ice content at a sunny sloping site was much higher (similar to 27%) than at a north-facing shady site (10%) and the ice was distributed differently with depth. The mean subsidence ratio at the eight sites was from 0.05 to 0.44. The volumetric ice content varied from 1% to 70% in samples from the different sites, with an average value of similar to 16%. Topographically controlled moisture availability, slope direction, and fine-particle content are important controls on ground ice content in Beiluhe Basin. This study provides fundamental information about the spatial distribution of ground ice on QTP, which is important for future assessments of thermal erosion potential and infrastructure instability in the region.